Asymptotic behavior and blow-up of solutions for a nonlocal parabolic equation with a special diffusion ff usion process

被引:0
作者
Zhao, Yaxin [1 ]
Wu, Xiulan [1 ]
机构
[1] Changchun Univ Sci & Technol, Sch Math & Stat, Changchun 130000, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
基金
中国国家自然科学基金;
关键词
logarithmic nonlocal source; special diffusion ff usion process; global existence; asymptotic behavior; blow-up; THIN-FILM EQUATION; GLOBAL EXISTENCE; NON-EXTINCTION; CONVERGENCE;
D O I
10.3934/math.20241113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a class of higher-order nonlocal parabolic equations with special coefficient. We apply the Faedo-Galerkin approximation method and cut-off technique to obtain the local solvability. Furthermore, based on the framework of the modified potential well, we get the global existence, asymptotic behavior, and blow-up of the weak solutions by the Hardy-Sobolev inequality when the initial energy is subcritical J ( u(0) ) < d . In the critical case of J ( u(0) ) = d , the above results have also been obtained. Finally, we utilize some new processing methods to gain the blow-up criterion in finite time with supercritical initial energy J ( u(0) ) > 0.
引用
收藏
页码:22883 / 22909
页数:27
相关论文
共 31 条
[1]  
[Anonymous], 1995, Rend. Circ. Mat. Palermo
[2]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[3]   BLOWUP IN A PARTIAL-DIFFERENTIAL EQUATION WITH CONSERVED 1ST INTEGRAL [J].
BUDD, C ;
DOLD, B ;
STUART, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (03) :718-742
[4]   Global blow-up for a semilinear heat equation on a subspace [J].
Budd, C. J. ;
Dold, J. W. ;
Galaktionov, V. A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (05) :893-923
[5]   Global existence and non-extinction of solutions to a fourth-order parabolic equation [J].
Cao, Yang ;
Liu, Conghui .
APPLIED MATHEMATICS LETTERS, 2016, 61 :20-25
[6]   A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions [J].
El Soufi, A. ;
Jazar, M. ;
Monneau, R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :17-39
[7]   Global existence and blow-up of solutions to a nonlocal parabolic equation with singular potential [J].
Feng, Min ;
Zhou, Jun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) :1213-1242
[8]   LOCAL VS NON-LOCAL INTERACTIONS IN POPULATION-DYNAMICS [J].
FURTER, J ;
GRINFELD, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :65-80
[9]   Blow-up of a nonlocal semilinear parabolic equation with positive initial energy [J].
Gao, Wenjie ;
Han, Yuzhu .
APPLIED MATHEMATICS LETTERS, 2011, 24 (05) :784-788
[10]   Classification of blow-up and global existence of solutions to an initial Neumann problem [J].
Guo, Bin ;
Zhang, Jingjing ;
Gao, Wenjie ;
Liao, Menglan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 340 :45-82