Progress in High-Resolution Vascular Imaging and Quantification( Invited)

被引:2
作者
Liu Yijie [1 ]
Wang Chuncheng [1 ]
Meng Jia [1 ]
Qian Shuhao [1 ]
Zhou Lingxi [1 ]
Chen Lingmei [1 ]
Liu Zhiyi [1 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
关键词
medical and biological imaging; high-resolution imaging; angiography; tomographic image processing; quantitative characterization; parametric analysis; COHERENCE TOMOGRAPHY ANGIOGRAPHY; OCT; INTENSITY; FLOW; SUPERRESOLUTION; VISUALIZATION; DECORRELATION; CONTRAST;
D O I
10.3788/LOP232137
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we summarize the advancements in high-resolution vascular imaging technology and its applications in the biomedical field. In particular, we focus on quantitative characterization methods applicable to high-resolution vascular images. The quantification process of vascular images generally comprises three main steps: image preprocessing, vascular image reconstruction and quantitative characterization acquisition, and statistical analysis of quantitative parameters. We provide a detailed explanation of the algorithm pipeline, accuracy assessment, and potential optimization directions for the methods employed in each step. Furthermore, we explore the significance of extracting biological information from various vascular and blood parameters for clinical reference. We also discuss the robustness of multiparametric models in distinguishing different stages of disease development within specific disease contexts. These advancements not only reflect the potential value of high-resolution vascular imaging technology and the application of quantitative characterizations but also provide new insights into their promising prospects for advancing fundamental biomedical research and clinical diagnosis.
引用
收藏
页数:18
相关论文
共 83 条
[1]   Tail artifact removal in OCT angiography images of rodent cortex [J].
Baran, Utku ;
Choi, Woo June ;
Li, Yuandong ;
Wang, Ruikang K. .
JOURNAL OF BIOPHOTONICS, 2017, 10 (11) :1421-1429
[2]   Flow measurement without phase information in optical coherence tomography images [J].
Barton, JK ;
Stromski, S .
OPTICS EXPRESS, 2005, 13 (14) :5234-5239
[3]   Recent Progress in NIR-II Contrast Agent for Biological Imaging [J].
Cao, Jie ;
Zhu, Binling ;
Zheng, Kefang ;
He, Songguo ;
Meng, Liang ;
Song, Jibin ;
Yang, Huanghao .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 7
[4]   Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo [J].
Chen, Chaoliang ;
Shi, Weisong ;
Gao, Wanrong .
JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (11)
[5]   Depression, stress, and regional cerebral blood flow [J].
Chiappelli, Joshua ;
Adhikari, Bhim M. ;
Kvarta, Mark D. ;
Bruce, Heather A. ;
Goldwaser, Eric L. ;
Ma, Yizhou ;
Chen, Shuo ;
Ament, Seth ;
Shuldiner, Alan R. ;
Mitchell, Braxton D. ;
Kochunov, Peter ;
Wang, Danny J. J. ;
Hong, L. Elliot .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2023, 43 (05) :791-800
[6]   Mean-Subtraction Method for De-Shadowing of Tail Artifacts in Cerebral OCTA Images: A Proof of Concept [J].
Choi, Woo June ;
Paulson, Bjorn ;
Yu, Sungwook ;
Wang, Ruikang K. ;
Kim, Jun Ki .
MATERIALS, 2020, 13 (09)
[7]   Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography [J].
Chu, Zhongdi ;
Lin, Jason ;
Gao, Chen ;
Xin, Chen ;
Zhang, Qinqin ;
Chen, Chieh-Li ;
Roisman, Luis ;
Gregori, Giovanni ;
Rosenfeld, Philip J. ;
Wang, Ruikang K. .
JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (06)
[8]   Retinal assessment using optical coherence tomography [J].
Costa, Rogerio A. ;
Skaf, Mirian ;
Melo, Luiz A. S., Jr. ;
Calucci, Daniela ;
Cardillo, Jose A. ;
Castro, Jarbas C. ;
Huang, David ;
Wojtkowski, Maciej .
PROGRESS IN RETINAL AND EYE RESEARCH, 2006, 25 (03) :325-353
[9]   IMAGING TECHNIQUES Super-resolution ultrasound [J].
Cox, Ben ;
Beard, Paul .
NATURE, 2015, 527 (7579) :451-452
[10]  
de Carlo Talisa E, 2015, Int J Retina Vitreous, V1, P5