Cardiac ultrasound simulation for autonomous ultrasound navigation

被引:0
作者
Amadou, Abdoul Aziz [1 ,2 ]
Peralta, Laura [1 ]
Dryburgh, Paul [1 ]
Klein, Paul [3 ]
Petkov, Kaloian [3 ]
Housden, R. James [1 ]
Singh, Vivek [3 ]
Liao, Rui [3 ]
Kim, Young-Ho [3 ]
Ghesu, Florin C. [4 ]
Mansi, Tommaso [3 ]
Rajani, Ronak [1 ]
Young, Alistair [1 ]
Rhode, Kawal [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Surg & Intervent Engn, London, England
[2] Siemens Healthcare Ltd, Digital Technol & Innovat, Camberley, England
[3] Siemens Healthineers, Digital Technol & Innovat, Princeton, NJ USA
[4] Siemens Healthineers AG, Digital Technol & Innovat, Erlangen, Germany
来源
FRONTIERS IN CARDIOVASCULAR MEDICINE | 2024年 / 11卷
基金
美国国家卫生研究院; 英国惠康基金;
关键词
ultrasound; Monte-Carlo integration; path tracing; simulation; echocardiography; CONTRAST;
D O I
10.3389/fcvm.2024.1384421
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction Ultrasound is well-established as an imaging modality for diagnostic and interventional purposes. However, the image quality varies with operator skills as acquiring and interpreting ultrasound images requires extensive training due to the imaging artefacts, the range of acquisition parameters and the variability of patient anatomies. Automating the image acquisition task could improve acquisition reproducibility and quality but training such an algorithm requires large amounts of navigation data, not saved in routine examinations.Methods We propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions, such that this pipeline can later be used by learning algorithms for navigation. We present a novel simulation pipeline which uses segmentations from other modalities, an optimized volumetric data representation and GPU-accelerated Monte Carlo path tracing to generate view-dependent and patient-specific ultrasound images.Results We extensively validate the correctness of our pipeline with a phantom experiment, where structures' sizes, contrast and speckle noise properties are assessed. Furthermore, we demonstrate its usability to train neural networks for navigation in an echocardiography view classification experiment by generating synthetic images from more than 1,000 patients. Networks pre-trained with our simulations achieve significantly superior performance in settings where large real datasets are not available, especially for under-represented classes.Discussion The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.
引用
收藏
页数:17
相关论文
共 42 条
  • [1] A Pipeline for the Generation of Realistic 3D Synthetic Echocardiographic Sequences: Methodology and Open-Access Database
    Alessandrini, M.
    De Craene, M.
    Bernard, O.
    Giffard-Roisin, S.
    Allain, P.
    Waechter-Stehle, I.
    Weese, J.
    Saloux, E.
    Delingette, H.
    Sermesant, M.
    D'hooge, J.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (07) : 1436 - 1451
  • [2] Realistic Vendor-Specific Synthetic Ultrasound Data for Quality Assurance of 2-D Speckle Tracking Echocardiography: Simulation Pipeline and Open Access Database
    Alessandrini, Martino
    Chakraborty, Bidisha
    Heyde, Brecht
    Bernard, Olivier
    De Craene, Mathieu
    Sermesant, Maxime
    D'hooge, Jan
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (03) : 411 - 422
  • [3] Arendt J., 1996, 10 NORD BALT C BIOM
  • [4] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [5] Real-Time GPU-Based Ultrasound Simulation Using Deformable Mesh Models
    Buerger, Benny
    Bettinghausen, Sascha
    Raedle, Matthias
    Hesser, Juergen
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (03) : 609 - 618
  • [6] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [7] Comparison of the Performance of Different Tools for Fast Simulation of Ultrasound Data
    Gao, Hang
    D'hooge, Jan
    Hergum, Torbjorn
    Torp, Hans
    [J]. 2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX, 2008, : 1318 - +
  • [8] A Fast Convolution-Based Methodology to Simulate 2-D/3-D Cardiac Ultrasound Images
    Gao, Hang
    Choi, Hon Fai
    Claus, Piet
    Boonen, Steven
    Jaecques, Siegfried
    van Lenthe, G. Harry
    Van der Perre, Georges
    Lauriks, Walter
    D'hooge, Jan
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2009, 56 (02) : 404 - 409
  • [9] Generating Synthetic Labeled Data From Existing Anatomical Models: An Example With Echocardiography Segmentation
    Gilbert, Andrew
    Marciniak, Maciej
    Rodero, Cristobal
    Lamata, Pablo
    Samset, Eigil
    Mcleod, Kristin
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (10) : 2783 - 2794
  • [10] Ultrasound-Guided Robotic Navigation with Deep Reinforcement Learning
    Hase, Hannes
    Azampour, Mohammad Farid
    Tirindelli, Maria
    Paschali, Magdalini
    Simson, Walter
    Fatemizadeh, Emad
    Navab, Nassir
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5534 - 5541