Zero-temperature entanglement membranes in quantum circuits

被引:5
作者
Sommers, Grace M. [1 ]
Gopalakrishnan, Sarang [2 ]
Gullans, Michael J. [3 ]
Huse, David A. [1 ]
机构
[1] Princeton Univ, Phys Dept, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Dynamics - Piecewise linear techniques - Quantum entanglement - Quantum optics - Timing circuits;
D O I
10.1103/PhysRevB.110.064311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In chaotic quantum systems, the entanglement of a region A can be described in terms of the surface tension of a spacetime membrane pinned to the boundary of A. Here, we interpret the tension of this entanglement membrane in terms of the rate at which information "flows" across it. For any orientation of the membrane, one can define (generically nonunitary) dynamics across the membrane; we explore this dynamics in various spacetime translation-invariant (STTI) stabilizer circuits in one and two spatial dimensions. We find that the flux of information across the membrane in these STTI circuits reaches a steady state. In the cases where this dynamics is nonunitary and the steady-state flux is nonzero, this occurs because the dynamics across the membrane is unitary in a subspace of extensive entropy. This generalized unitarity is present in a broad class of STTI stabilizer circuits and is also present in some special nonstabilizer models. The existence of multiple unitary (or generalized unitary) directions forces the entanglement membrane tension to be a piecewise linear function of the orientation of the membrane; in this respect, the entanglement membrane behaves like an interface in a zero-temperature classical lattice model. We argue that entanglement membranes in random stabilizer circuits that produce volume-law entanglement are also effectively at zero temperature.
引用
收藏
页数:12
相关论文
共 84 条
  • [21] Maximum velocity quantum circuits
    Claeys, Pieter W.
    Lamacraft, Austen
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [22] All unitaries having operator Schmidt rank 2 are controlled unitaries
    Cohen, Scott M.
    Yu, Li
    [J]. PHYSICAL REVIEW A, 2013, 87 (02):
  • [23] De Luca A, 2024, Arxiv, DOI arXiv:2312.17744
  • [24] Quantum data hiding
    DiVincenzo, DP
    Leung, DW
    Terhal, BM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) : 580 - 598
  • [25] Foligno A., 2024, Phys. Rev. Lett., V132
  • [26] A Dyson Brownian Motion Model for Weak Measurements in Chaotic Quantum Systems
    Gerbino, Federico
    Le Doussal, Pierre
    Giachetti, Guido
    De Luca, Andrea
    [J]. QUANTUM REPORTS, 2024, 6 (02): : 200 - 230
  • [27] Entanglement and Purification Transitions in Non-Hermitian Quantum Mechanics
    Gopalakrishnan, Sarang
    Gullans, Michael J.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (17)
  • [28] Unitary circuits of finite depth and infinite width from quantum channels
    Gopalakrishnan, Sarang
    Lamacraft, Austen
    [J]. PHYSICAL REVIEW B, 2019, 100 (06)
  • [29] Facilitated quantum cellular automata as simple models with non-thermal eigenstates and dynamics
    Gopalakrishnan, Sarang
    Zakirov, Bahti
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (04):
  • [30] Gottesman D., 2022, arXiv