Zero-temperature entanglement membranes in quantum circuits

被引:5
作者
Sommers, Grace M. [1 ]
Gopalakrishnan, Sarang [2 ]
Gullans, Michael J. [3 ]
Huse, David A. [1 ]
机构
[1] Princeton Univ, Phys Dept, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Dynamics - Piecewise linear techniques - Quantum entanglement - Quantum optics - Timing circuits;
D O I
10.1103/PhysRevB.110.064311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In chaotic quantum systems, the entanglement of a region A can be described in terms of the surface tension of a spacetime membrane pinned to the boundary of A. Here, we interpret the tension of this entanglement membrane in terms of the rate at which information "flows" across it. For any orientation of the membrane, one can define (generically nonunitary) dynamics across the membrane; we explore this dynamics in various spacetime translation-invariant (STTI) stabilizer circuits in one and two spatial dimensions. We find that the flux of information across the membrane in these STTI circuits reaches a steady state. In the cases where this dynamics is nonunitary and the steady-state flux is nonzero, this occurs because the dynamics across the membrane is unitary in a subspace of extensive entropy. This generalized unitarity is present in a broad class of STTI stabilizer circuits and is also present in some special nonstabilizer models. The existence of multiple unitary (or generalized unitary) directions forces the entanglement membrane tension to be a piecewise linear function of the orientation of the membrane; in this respect, the entanglement membrane behaves like an interface in a zero-temperature classical lattice model. We argue that entanglement membranes in random stabilizer circuits that produce volume-law entanglement are also effectively at zero temperature.
引用
收藏
页数:12
相关论文
共 84 条
  • [1] Improved simulation of stabilizer circuits
    Aaronson, S
    Gottesman, D
    [J]. PHYSICAL REVIEW A, 2004, 70 (05): : 052328 - 1
  • [2] Aasen D, 2023, Arxiv, DOI arXiv:2304.01277
  • [3] Bit threads and the membrane theory of entanglement dynamics
    Agon, Cesar A.
    Mezei, Mark
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (11)
  • [4] Particle-time duality in the kicked Ising spin chain
    Akila, M.
    Waltner, D.
    Gutkin, B.
    Guhr, T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (37)
  • [5] Albert V. V., 2023, The error correction zoo
  • [6] From dual-unitary to quantum Bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy
    Aravinda, S.
    Rather, Suhail Ahmad
    Lakshminarayan, Arul
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [7] Ashcroft NW., 1976, Solid State Physics, Vcollege edition
  • [8] Operator-Schmidt decomposition and the geometrical edges of two-qubit gates
    Balakrishnan, S.
    Sankaranarayanan, R.
    [J]. QUANTUM INFORMATION PROCESSING, 2011, 10 (04) : 449 - 461
  • [9] Banica T, 2024, Arxiv, DOI arXiv:1910.06911
  • [10] Exact Quench Dynamics of the Floquet Quantum East Model at the Deterministic Point
    Bertini, Bruno
    De Fazio, Cecilia
    Garrahan, Juan P.
    Klobas, Katja
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (12)