Curtaining artifacts generation on synthetic FIB-SEM data via Generative Adversarial Networks

被引:2
作者
Roldan, Diego [1 ]
Barbosa-Torres, Luis [2 ]
机构
[1] Univ Nacl Colombia, Fac Ciencias, Dept Matemat, Cra 45 26-85, Bogota 111321, Colombia
[2] Javerian Univ, Cra 7 40-62, Bogota 110110, Colombia
关键词
FIB-SEM; Synthetic data; GAN's; Curtaining artifacts; SEGMENTATION ALGORITHMS; REMOVAL; SIMULATION; IMAGES; MODEL;
D O I
10.1016/j.optcom.2024.131029
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
FIB-SEM imaging stands out as an advanced method for capturing nanoscale structures. Throughout the image acquisition process, various artifacts emerge, including curtaining and charging artifacts. Effectively addressing these artifacts requires specialized algorithms tailored to their unique characteristics. Consequently, the development of algorithms demands simulated images used as benchmarks for validation. Simulating FIB-SEM images is a complex task, prompting the exploration of generative models as an alternative for simulation. We have adapted generative models to encompass curtaining artifacts, a feature challenging to replicate through conventional simulations. The resulting images demonstrate comparability with synthetically generated counterparts.
引用
收藏
页数:9
相关论文
共 41 条
[31]   Simulation of FIB-SEM Images for Analysis of Porous Microstructures [J].
Prill, Torben ;
Schladitz, Katja .
SCANNING, 2013, 35 (03) :189-195
[32]   Image quality evaluation for FIB-SEM images [J].
Roldan, Diego ;
Redenbach, Claudia ;
Schladitz, Katja ;
Kuebel, Christian ;
Schlabach, Sabine .
JOURNAL OF MICROSCOPY, 2024, 293 (02) :98-117
[33]   Reconstructing porous structures from FIB-SEM image data: Optimizing sampling scheme and image processing [J].
Roldan, Diego ;
Redenbach, Claudia ;
Schladitz, Katja ;
Klingele, Matthias ;
Godehardt, Michael .
ULTRAMICROSCOPY, 2021, 226
[34]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[35]   Quantitative comparison of segmentation algorithms for FIB-SEM images of porous media [J].
Salzer, M. ;
Prill, T. ;
Spettl, A. ;
Jeulin, D. ;
Schladitz, K. ;
Schmidt, V. .
JOURNAL OF MICROSCOPY, 2015, 257 (01) :23-30
[36]   On the importance of FIB-SEM specific segmentation algorithms for porous media [J].
Salzer, Martin ;
Thiele, Simon ;
Zengerle, Roland ;
Schmidt, Volker .
MATERIALS CHARACTERIZATION, 2014, 95 :36-43
[37]   Training Deep Neural Networks to Reconstruct Nanoporous Structures From FIB Tomography Images Using Synthetic Training Data [J].
Sardhara, Trushal ;
Aydin, Roland C. ;
Li, Yong ;
Piche, Nicolas ;
Gauvin, Raynald ;
Cyron, Christian J. ;
Ritter, Martin .
FRONTIERS IN MATERIALS, 2022, 9
[38]   Multi-Angle Plasma Focused Ion Beam (FIB) Curtaining Artifact Correction Using a Fourier-Based Linear Optimization Model [J].
Schankula, Christopher W. ;
Anand, Christopher K. ;
Bassim, Nabil D. .
MICROSCOPY AND MICROANALYSIS, 2018, 24 (06) :657-666
[39]  
Schneider R., 2000, Teubner Skripten zur Mathematischen Stochastik
[40]  
Windisch G, 2015, 2015 IEEE 13TH INTERNATIONAL SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI), P273, DOI 10.1109/SAMI.2015.7061889