Arbitrarily Configurable Nonlinear Topological Modes

被引:8
作者
Bai, Kai [1 ,2 ]
Li, Jia-Zheng [1 ,2 ]
Liu, Tian-Rui [1 ,2 ]
Fang, Liang [1 ,2 ]
Wan, Duanduan [1 ,2 ]
Xiao, Meng [1 ,2 ,3 ]
机构
[1] Wuhan Univ, Minist Educ, Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] Wuhan Inst Quantum Technol, Wuhan 430206, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
EDGE STATES; PROTECTION; SOLITONS; LIGHT;
D O I
10.1103/PhysRevLett.133.116602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological modes (TMs) are typically localized at boundaries, interfaces and dislocations, and exponentially decay into the bulk of a large enough lattice. Recently, the non-Hermitian skin effect has been leveraged to delocalize the wave functions of TMs from the boundary and thus to increase the capacity of TMs dramatically. Here, we explore the capability of nonlinearity in designing and configuring the wave functions of TMs. With growing intensity, wave functions of these in-gap nonlinear TMs undergo an initial deviation from exponential decay, gradually merge into arbitrarily designable plateaus, then encompass the entire nonlinear domain, and eventually concentrate at the nonlinear boundary. Intriguingly, such extended nonlinear TMs are still robust against defects and disorders, and stable in dynamics under external excitation. Advancing the conceptual understanding of the nonlinear TMs, our results open new avenues for increasing the capacity of TMs and developing compact and configurable topological devices.
引用
收藏
页数:7
相关论文
共 82 条
[61]   Gap solitons in a one-dimensional driven-dissipative topological lattice [J].
Pernet, Nicolas ;
St-Jean, Philippe ;
Solnyshkov, Dmitry D. ;
Malpuech, Guillaume ;
Zambon, Nicola Carlon ;
Fontaine, Quentin ;
Real, Bastian ;
Jamadi, Omar ;
Lemaitre, Aristide ;
Morassi, Martina ;
Le Gratiet, Luc ;
Baptiste, Teo ;
Harouri, Abdelmounaim ;
Sagnes, Isabelle ;
Amo, Alberto ;
Ravets, Sylvain ;
Bloch, Jacqueline .
NATURE PHYSICS, 2022, 18 (06) :678-+
[62]   Photonic Floquet topological insulators [J].
Rechtsman, Mikael C. ;
Zeuner, Julia M. ;
Plotnik, Yonatan ;
Lumer, Yaakov ;
Podolsky, Daniel ;
Dreisow, Felix ;
Nolte, Stefan ;
Segev, Mordechai ;
Szameit, Alexander .
NATURE, 2013, 496 (7444) :196-200
[63]   ELEMENTARY EXCITATIONS OF A LINEARLY CONJUGATED DIATOMIC POLYMER [J].
RICE, MJ ;
MELE, EJ .
PHYSICAL REVIEW LETTERS, 1982, 49 (19) :1455-1459
[64]   Nonlinear topological photonics [J].
Smirnova, Daria ;
Leykam, Daniel ;
Chong, Yidong ;
Kivshar, Yuri .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[65]   SOLITONS IN POLYACETYLENE [J].
SU, WP ;
SCHRIEFFER, JR ;
HEEGER, AJ .
PHYSICAL REVIEW LETTERS, 1979, 42 (25) :1698-1701
[66]   Local topological markers in odd dimensions [J].
Sykes, Joseph ;
Barnett, Ryan .
PHYSICAL REVIEW B, 2021, 103 (15)
[67]   Enhancement of magnonic frequency combs by exceptional points [J].
Wang, Congyi ;
Rao, Jinwei ;
Chen, Zhijian ;
Zhao, Kaixin ;
Sun, Liaoxin ;
Yao, Bimu ;
Yu, Tao ;
Wang, Yi-Pu ;
Lu, Wei .
NATURE PHYSICS, 2024, 20 (07) :1139-1144
[68]   Topological states of condensed matter [J].
Wang, Jing ;
Zhang, Shou-Cheng .
NATURE MATERIALS, 2017, 16 (11) :1062-1067
[69]   Non-Hermitian morphing of topological modes [J].
Wang, Wei ;
Wang, Xulong ;
Ma, Guancong .
NATURE, 2022, 608 (7921) :50-+
[70]   Bistability of Cavity Magnon Polaritons [J].
Wang, Yi-Pu ;
Zhang, Guo-Qiang ;
Zhang, Dengke ;
Li, Tie-Fu ;
Hu, C. -M. ;
You, J. Q. .
PHYSICAL REVIEW LETTERS, 2018, 120 (05)