SP-SeaNeRF: Underwater Neural Radiance Fields with strong scattering perception

被引:3
作者
Chen, Lifang [1 ]
Xiong, Yuchen [1 ]
Zhang, Yanjie [1 ]
Yu, Ruiyin [1 ]
Fang, Lian [1 ]
Liu, Defeng [2 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] China Ship Sci Res Ctr, Wuxi 214082, Jiangsu, Peoples R China
来源
COMPUTERS & GRAPHICS-UK | 2024年 / 123卷
关键词
Underwater image restoration; Scene reconstruction; Neural field; Illumination embedding vectors; RECONSTRUCTION; VISION;
D O I
10.1016/j.cag.2024.104025
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Water and light interactions cause color shifts and blurring in underwater images, while dynamic underwater illumination further disrupts scene consistency, resulting in poor performance of optical image-based reconstruction methods underwater. Although Neural Radiance Fields (NeRF) can describe aqueous medium through volume rendering, applying it directly underwater may induce artifacts and floaters. We propose SPSeaNeRF, which uses micro MLP to predict water column parameters and simulates the degradation process as a combination of real colors and scattered colors in underwater images, enhancing the model's perception of scattering. We use illumination embedding vectors to learn the illumination bias within the images, in order to prevent dynamic illumination from disrupting scene consistency. We have introduced a novel sampling module, which focuses on maximum weight points, effectively improves training and inference speed. We evaluated our proposed method on SeaThru-NeRF and Neuralsea underwater datasets. The experimental results show that our method exhibits superior underwater color restoration ability, outperforming existing underwater NeRF in terms of reconstruction quality and speed.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Sea-thru: A Method For Removing Water From Underwater Images [J].
Akkaynak, Derya ;
Treibitz, Tali .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1682-1691
[2]   A Revised Underwater Image Formation Model [J].
Akkaynak, Derya ;
Treibitz, Tali .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6723-6732
[3]  
Arandjelovic R., 2021, arXiv, DOI DOI 10.48550/ARXIV.2106.05264
[4]   Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields [J].
Barron, Jonathan T. ;
Mildenhall, Ben ;
Verbin, Dor ;
Srinivasan, Pratul P. ;
Hedman, Peter .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5460-5469
[5]   Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields [J].
Barron, Jonathan T. ;
Mildenhall, Ben ;
Tancik, Matthew ;
Hedman, Peter ;
Martin-Brualla, Ricardo ;
Srinivasan, Pratul P. .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :5835-5844
[6]   Refractive Two-View Reconstruction for Underwater 3D Vision [J].
Chadebecq, Francois ;
Vasconcelos, Francisco ;
Lacher, Rene ;
Maneas, Efthymios ;
Desjardins, Adrien ;
Ourselin, Sebastien ;
Vercauteren, Tom ;
Stoyanov, Danail .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (05) :1101-1117
[7]   Domain Adaptation for Underwater Image Enhancement via Content and Style Separation [J].
Chen, Yu-Wei ;
Pei, Soo-Chang .
IEEE ACCESS, 2022, 10 :90523-90534
[8]  
Fang J., 2021, arXiv, DOI DOI 10.48550/ARXIV.2111.15552
[9]   Plenoxels: Radiance Fields without Neural Networks [J].
Fridovich-Keil, Sara ;
Yu, Alex ;
Tancik, Matthew ;
Chen, Qinhong ;
Recht, Benjamin ;
Kanazawa, Angjoo .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5491-5500
[10]   FastNeRF: High-Fidelity Neural Rendering at 200FPS [J].
Garbin, Stephan J. ;
Kowalski, Marek ;
Johnson, Matthew ;
Shotton, Jamie ;
Valentin, Julien .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :14326-14335