A contemporary review of breast cancer risk factors and the role of artificial intelligence

被引:9
作者
Nicolis, Orietta [1 ,2 ]
De Los Angeles, Denisse [1 ,2 ]
Taramasco, Carla [1 ,2 ]
机构
[1] Univ Andres Bello, Engn Fac, Vina Del Mar, Chile
[2] Ctr Prevenc & Control Canc CECAN, Santiago, Chile
关键词
breast cancer; risk factors; artificial intelligence (AI); medical history; metabolic factors; reproductive and hormonal factors; lifestyle factors; environmental influence; METABOLIC SYNDROME; WOMEN; ASSOCIATION;
D O I
10.3389/fonc.2024.1356014
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Breast cancer continues to be a significant global health issue, necessitating advancements in prevention and early detection strategies. This review aims to assess and synthesize research conducted from 2020 to the present, focusing on breast cancer risk factors, including genetic, lifestyle, and environmental aspects, as well as the innovative role of artificial intelligence (AI) in prediction and diagnostics.Methods A comprehensive literature search, covering studies from 2020 to the present, was conducted to evaluate the diversity of breast cancer risk factors and the latest advances in Artificial Intelligence (AI) in this field. The review prioritized high-quality peer-reviewed research articles and meta-analyses.Results Our analysis reveals a complex interplay of genetic, lifestyle, and environmental risk factors for breast cancer, with significant variability across different populations. Furthermore, AI has emerged as a promising tool in enhancing the accuracy of breast cancer risk prediction and the personalization of prevention strategies.Conclusion The review highlights the necessity for personalized breast cancer prevention and detection approaches that account for individual risk factor profiles. It underscores the potential of AI to revolutionize these strategies, offering clear recommendations for future research directions and clinical practice improvements.
引用
收藏
页数:18
相关论文
共 114 条
[1]   Clinical characteristics, risk factors, and outcomes in Chilean triple negative breast cancer patients: a real-world study [J].
Acevedo, Francisco ;
Walbaum, Benjamin ;
Medina, Lidia ;
Merino, Tomas ;
Camus, Mauricio ;
Puschel, Klaus ;
Ramirez, Karol ;
Manzor, Manuel ;
Veglia, Paulina ;
Martinez, Raul ;
Guerra, Constanza ;
Navarro, Marisel ;
Bauerle, Catherine ;
Dominguez, Francisco ;
Sanchez, Cesar .
BREAST CANCER RESEARCH AND TREATMENT, 2023, 197 (02) :449-459
[2]   The Molecular and Genetic Interactions between Obesity and Breast Cancer Risk [J].
Ajabnoor, Ghada M. A. .
MEDICINA-LITHUANIA, 2023, 59 (07)
[3]   Race, Ethnicity, and Clinical Outcomes in Hormone Receptor-Positive, HER2-Negative, Node-Negative Breast Cancer in the Randomized TAILORx Trial [J].
Albain, Kathy S. ;
Gray, Robert J. ;
Makower, Della F. ;
Faghih, Amir ;
Hayes, Daniel F. ;
Geyer, Charles E., Jr. ;
Dees, Elizabeth C. ;
Goetz, Matthew P. ;
Olson, John A., Jr. ;
Lively, Tracy ;
Badve, Sunil S. ;
Saphner, Thomas J. ;
Wagner, Lynne, I ;
Whelan, Timothy J. ;
Ellis, Matthew J. ;
Wood, William C. ;
Keane, Maccon M. ;
Gomez, Henry L. ;
Reddy, Pavan S. ;
Goggins, Timothy F. ;
Mayer, Ingrid A. ;
Brufsky, Adam M. ;
Toppmeyer, Deborah L. ;
Kaklamani, Virginia G. ;
Berenberg, Jeffrey L. ;
Abrams, Jeffrey ;
Sledge, George W., Jr. ;
Sparano, Joseph A. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2021, 113 (04) :390-399
[4]   Predicting Breast Cancer from Risk Factors Using SVM and Extra-Trees-Based Feature Selection Method [J].
Alfian, Ganjar ;
Syafrudin, Muhammad ;
Fahrurrozi, Imam ;
Fitriyani, Norma Latif ;
Atmaji, Fransiskus Tatas Dwi ;
Widodo, Tri ;
Bahiyah, Nurul ;
Benes, Filip ;
Rhee, Jongtae .
COMPUTERS, 2022, 11 (09)
[5]  
Ali A.S., 2024, World Acad. Sci. J., V6, P1, DOI [10.3892/wasj.2023.219, DOI 10.3892/WASJ.2023.219]
[6]   Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence [J].
Almansour, Nahlah Makki .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
[7]   Predicting the recurrence of breast cancer using machine learning algorithms [J].
Alzu'bi, Amal ;
Najadat, Hassan ;
Doulat, Wesam ;
Al-Shari, Osama ;
Zhou, Leming .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (09) :13787-13800
[8]  
Arafat Heba Mohammed, 2023, Asian Pac J Cancer Prev, V24, P717, DOI 10.31557/APJCP.2023.24.2.717
[9]   Current state of breast cancer in Mexico: Main types and risk factors [J].
Arceo-Martinez, Maria T. ;
Lopez-Meza, Joel E. ;
Ochoa-Zarzosa, Alejandra ;
Palomera-Sanchez, Zoraya .
GACETA MEXICANA DE ONCOLOGIA, 2021, 20 (03) :101-110
[10]   bibliometrix: An R-tool for comprehensive science mapping analysis [J].
Aria, Massimo ;
Cuccurullo, Corrado .
JOURNAL OF INFORMETRICS, 2017, 11 (04) :959-975