Prediction of lymphovascular invasion of gastric cancer based on contrast-enhanced computed tomography radiomics

被引:0
作者
Zhen, Si-Yu [1 ,2 ,3 ]
Wei, Yong [1 ]
Song, Ran [1 ]
Liu, Xiao-Huan [1 ]
Li, Pei-Ru [1 ]
Kong, Xiang-Yan [1 ]
Wei, Han-Yu [1 ]
Fan, Wen-Hua [1 ]
Liang, Chang-Hua [1 ,2 ,3 ]
机构
[1] Xinxiang Med Univ, Affiliated Hosp 1, Dept Radiol, Xinxiang, Peoples R China
[2] Henan Key Lab Chron Dis Prevent & Therapy & Intell, Xinxiang, Peoples R China
[3] Xinxiang Key Lab Esophageal Canc Imaging Diag & Ar, Xinxiang, Peoples R China
关键词
contrast-enhanced computed tomography; gastric cancer; lymphovascular invasion; radiomics models; oncology; PROGNOSTIC VALUE; SURVIVAL; IMAGES;
D O I
10.3389/fonc.2024.1389278
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Lymphovascular invasion (LVI) is a significant risk factor for lymph node metastasis in gastric cancer (GC) and is closely related to the prognosis and recurrence of GC. This study aimed to establish clinical models, radiomics models and combination models for the diagnosis of GC vascular invasion.Methods This study enrolled 146 patients with GC proved by pathology and who underwent radical resection of GC. The patients were assigned to the training and validation cohorts. A total of 1,702 radiomic features were extracted from contrast-enhanced computed tomography images of GC. Logistic regression analyses were performed to establish a clinical model, a radiomics model and a combined model. The performance of the predictive models was measured by the receiver operating characteristic (ROC) curve.Results In the training cohort, the age of LVI negative (-) patients and LVI positive (+) patients were 62.41 +/- 8.41 and 63.76 +/- 10.08 years, respectively, and there were more male (n = 63) than female (n = 19) patients in the LVI (+) group. Diameter and differentiation were the independent risk factors for determining LVI (-) and (+). A combined model was found to be relatively highly discriminative based on the area under the ROC curve for both the training (0.853, 95% CI: 0.784-0.920, sensitivity: 0.650 and specificity: 0.907) and the validation cohorts (0.742, 95% CI: 0.559-0.925, sensitivity: 0.736 and specificity: 0.700).Conclusions The combined model had the highest diagnostic effectiveness, and the nomogram established by this model had good performance. It can provide a reliable prediction method for individual treatment of LVI in GC before surgery.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Gastric Cancer, Version 2.2022 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Cooke, David ;
Corvera, Carlos ;
Das, Prajnan ;
Enzinger, Peter C. ;
Enzler, Thomas ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael K. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kim, Sunnie ;
Kleinberg, Lawrence R. ;
Klempner, Samuel J. ;
Lacy, Jill ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Outlaw, Darryl ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Reznik, Scott ;
Roses, Robert E. ;
Strong, Vivian E. ;
Su, Stacey ;
Wang, Hanlin L. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Yakoub, Danny ;
Yoon, Harry ;
McMillian, Nicole ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02) :167-192
[3]   Radiomics Evaluation of Histological Heterogeneity Using Multiscale Textures Derived From 3D Wavelet Transformation of Multispectral Images [J].
Chaddad, Ahmad ;
Daniel, Paul ;
Niazi, Tamim .
FRONTIERS IN ONCOLOGY, 2018, 8
[4]   Nomograms for pre- and postoperative prediction of long-term survival among proximal gastric cancer patients: A large-scale, single-center retrospective study [J].
Chen, Qi-Yue ;
Hong, Zhi-Liang ;
Zhong, Qing ;
Liu, Zhi-Yu ;
Huang, Xiao-Bo ;
Que, Si-Jin ;
Li, Ping ;
Xie, Jian-Wei ;
Wang, Jia-Bin ;
Lin, Jian-Xian ;
Lu, Jun ;
Cao, Long-Long ;
Lin, Mi ;
Tu, Ru-Hong ;
Zheng, Chao-Hui ;
Huang, Chang-Ming .
WORLD JOURNAL OF CLINICAL CASES, 2019, 7 (21) :3419-3435
[5]   Radiomics analysis of contrast-enhanced CT predicts lymphovascular invasion and disease outcome in gastric cancer: a preliminary study [J].
Chen, Xiaofeng ;
Yang, Zhiqi ;
Yang, Jiada ;
Liao, Yuting ;
Pang, Peipei ;
Fan, Weixiong ;
Chen, Xiangguang .
CANCER IMAGING, 2020, 20 (01)
[6]   Lymphovascular Invasion: Traditional but Vital and Sensible Prognostic Factor in Early Gastric Cancer [J].
Choi, Seohee ;
Song, Jeong Ho ;
Lee, Sejin ;
Cho, Minah ;
Kim, Yoo Min ;
Kim, Hyoung-Il ;
Hyung, Woo Jin .
ANNALS OF SURGICAL ONCOLOGY, 2021, 28 (13) :8928-8935
[7]   The gastric precancerous cascade [J].
Correa, Pelayo ;
Piazuelo, M. Blanca .
JOURNAL OF DIGESTIVE DISEASES, 2012, 13 (01) :2-9
[8]   Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update [J].
Duffy, M. J. ;
Lamerz, R. ;
Haglund, C. ;
Nicolini, A. ;
Kalousova, M. ;
Holubec, L. ;
Sturgeon, C. .
INTERNATIONAL JOURNAL OF CANCER, 2014, 134 (11) :2513-2522
[9]   The global, regional, and national burden of stomach cancer in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease study 2017 [J].
Etemadi, Arash ;
Safiri, Saeid ;
Sepanlou, Sadaf G. ;
Ikuta, Kevin ;
Bisignano, Catherine ;
Shakeri, Ramin ;
Amani, Mohammad ;
Fitzmaurice, Christina ;
Nixon, Molly R. ;
Abbasi, Nooshin ;
Abolhassani, Hassan ;
Advani, Shailesh M. ;
Afarideh, Mohsen ;
Akinyemiju, Tomi ;
Alam, Tahiya ;
Alikhani, Mahtab ;
Alipour, Vahid ;
Allen, Christine A. ;
Almasi-Hashiani, Amir ;
Arabloo, Jalal ;
Assadi, Reza ;
Atique, Suleman ;
Awasthi, Ashish ;
Bakhtiari, Ahad ;
Behzadifar, Masoud ;
Berhe, Kidanemaryam ;
Bhala, Neeraj ;
Bijani, Ali ;
Bin Sayeed, Muhammad Shahdaat ;
Bjorge, Tone ;
Borzi, Antonio M. ;
Braithwaite, Dejana ;
Brenner, Hermann ;
Carreras, Giulia ;
Carvalho, Felix ;
Castaneda-Orjuela, Carlos A. ;
Castro, Franz ;
Dinh-Toi Chu ;
Costa, Vera M. ;
Daryani, Ahmad ;
Davitoiu, Dragos Virgil ;
Demoz, Gebre T. ;
Demis, Asmamaw Bizuneh ;
Denova-Gutierrez, Edgar ;
Dey, Subhojit ;
Nasab, Mostafa Dianati ;
Djalalinia, Shirin ;
Emamian, Mohammad Hassan ;
Farahmand, Mohammad ;
Fernandes, Joao C. .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (01) :42-54
[10]   Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables [J].
Fan, Lijing ;
Li, Jing ;
Zhang, Huiling ;
Yin, Hongkun ;
Zhang, Rongguo ;
Zhang, Jibin ;
Chen, Xuejun .
ABDOMINAL RADIOLOGY, 2022, 47 (04) :1209-1222