Implicit discrete-time implementation of robust exact differentiators - a toolbox

被引:0
|
作者
Seeber, Richard [1 ]
机构
[1] Graz Univ Technol, Inst Regelungs & Automatisierungstechn, Inffeldgasse 21-B-I, A-8010 Graz, Austria
关键词
sliding-mode differentiation; variable-structure systems; backward Euler discretization; sample-based differentiation; numerical implementation; Sliding-Mode Differenzierer; strukturvariable Systeme; r & uuml; ckw & auml; rts-Euler Diskretisierung; Differentiation abgetasteter Signale; numerische Implementierung; DISCRETIZATION;
D O I
10.1515/auto-2024-5068
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the numerical implementation of the recently proposed implicit robust exact differentiator (IRED), which constitutes a proper implicit discretization of Levant's continuous-time robust exact differentiator (RED). A novel parameter setting is proposed that allows for an implementation without numerical approximations, which are otherwise required for resolving the implicit relations. Algorithms for the proposed and for general parameter settings are given, and a Simulink toolbox, available at the URL https://github.com/seeberr/ired_toolbox, is presented that implements the algorithms with an easy-to-use interface. Dieser Artikel behandelt die numerische Implementierung des k & uuml;rzlich vorgestellten impliziten robusten exakten Differenzierers (IRED), einer korrekten impliziten Diskretisierung des zeitkontinuierlichen robusten exakten Differenzierers (RED) von Levant. Eine neue, spezielle Parameterwahl erlaubt eine besonders einfache Implementierung ohne die Notwendigkeit numerischer Approximationen zur Aufl & ouml;sung der impliziten Gleichungen. Sowohl f & uuml;r diese spezielle als auch f & uuml;r eine allgemeine Parameterwahl werden numerische Algorithmen angegeben und eine Simulink Toolbox wird vorgestellt, welche unter dem URL https://github.com/seeberr/ired_toolbox verf & uuml;gbar ist und diese Algorithmen mit einer einfach zu benutzenden Schnittstelle zug & auml;nglich macht.
引用
收藏
页码:757 / 768
页数:12
相关论文
共 50 条
  • [41] Robust ε-contaminated filter for discrete-time systems
    Blanco, E.
    Neveux, Ph.
    Boukrouche, A.
    2014 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2014, : 493 - 497
  • [42] ROBUST DISCRETE-TIME SLIDING MODE CONTROLLER
    CHAN, CY
    SYSTEMS & CONTROL LETTERS, 1994, 23 (05) : 371 - 374
  • [43] A new discrete-time robust stability condition
    De, Oliveira, M.C.
    Bernussou, J.
    Geromel, J.C.
    Systems and Control Letters, 1999, 37 (04): : 261 - 265
  • [44] Design of robust discrete-time control systems
    Yurkevich, VD
    APEIE-98: 1998 4TH INTERNATIONAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRONIC INSTRUMENT ENGINEERING PROCEEDINGS, VOL 1, 1998, : 397 - 400
  • [45] Optimum design of discrete-time differentiators via semi-infinite programming approach
    Ho, Charlotte Yuk-Fan
    Ling, Bingo Wing-Kuen
    Liu, Yan-Qun
    Tam, Peter Kwong-Shun
    Teo, Kok-Lay
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (10) : 2226 - 2230
  • [46] DISCRETE-TIME MRAS WITH REDUCED IMPLEMENTATION COMPLEXITY
    KARIM, AAA
    NAGARAJAN, R
    MIRZA, KB
    ELECTRONICS LETTERS, 1981, 17 (21) : 809 - 810
  • [47] Tuning and implementation variants of discrete-time ADRC
    Herbst, Gernot
    Madonski, Rafal
    CONTROL THEORY AND TECHNOLOGY, 2023, 21 (01) : 72 - 88
  • [48] Tuning and implementation variants of discrete-time ADRC
    Gernot Herbst
    Rafal Madonski
    Control Theory and Technology, 2023, 21 : 72 - 88
  • [49] An implicit representation for the analysis of piecewise affine discrete-time systems
    Groff, Leonardo Broering
    Valmorbida, Giorgio
    da Silva, Joao Manoel Gomes
    AUTOMATICA, 2023, 147
  • [50] Stabilization of Discrete-Time Piecewise Affine Systems in Implicit Representation
    Cabral, L.
    da Silva Jr, J. M. Gomes Jr
    Valmorbida, G.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6049 - 6054