A light CNN based on residual learning and background estimation for hyperspectral anomaly detection

被引:3
作者
Zhang, Jiajia [1 ,2 ]
Xiang, Pei [1 ]
Shi, Jin [1 ]
Teng, Xiang [1 ]
Zhao, Dong [3 ]
Zhou, Huixin [1 ]
Li, Huan [1 ]
Song, Jiangluqi [1 ]
机构
[1] Xidian Univ, 2 South Taibai Rd, Xian 710071, Peoples R China
[2] Univ Melbourne, Grattan St, Melbourne 3010, Australia
[3] Wuxi Univ, Wuxi 214105, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral anomaly detection; Residual learning; Non-central convolution; Background estimation; Convolutional Neural Network; COLLABORATIVE REPRESENTATION; LOW-RANK; RX-ALGORITHM;
D O I
10.1016/j.jag.2024.104069
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Existing deep learning-based hyperspectral anomaly detection methods typically perform anomaly detection by reconstructing a clean background. However, for the deep networks, there are many parameters that need to be adjusted. To reduce parameters of network and improve the performance of anomaly detection, a light CNN based on residual learning and background estimation was proposed. Different from traditional methods, the proposed method could directly learn anomaly features rather than background features. First, during the training stage, a background estimation method based on non-central convolution kernels was used to obtain the pseudo-background. Second, to purify the pseudo-background, a pair down-sampling method and a joint loss that combines cross-approximation background loss and consistency loss were proposed. Third, the anomaly matrix was obtained by the difference between the hyperspectral image (HSI) and the pseudo- background. Fourth, a light CNN with three layers was proposed to extract features of the anomaly matrix. Finally, during the prediction stage, anomaly detection results were calculated from the predicted anomaly matrix obtained by light CNN through the Mahalanobis distance. Experiments were conducted with multiple metrics on five real-world datasets. Compared with eight state-of-the-art methods, the proposed method achieved the superior performance in both qualitative and quantitative evaluations.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A SPARSE AUTOENCODER BASED HYPERSPECTRAL ANOMALY DETECTION ALGORIHTM USING RESIDUAL OF RECONSTRUCTION ERROR
    Chang, Shizhen
    Du, Bo
    Zhang, Liangpei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5488 - 5491
  • [42] Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection
    Xie, Weiying
    Zhang, Xin
    Li, Yunsong
    Wang, Keyan
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5887 - 5897
  • [43] Unsupervised Generative Adversarial Network with Background Enhancement and Irredundant Pooling for Hyperspectral Anomaly Detection
    Li, Zhongwei
    Shi, Shunxiao
    Wang, Leiquan
    Xu, Mingming
    Li, Luyao
    REMOTE SENSING, 2022, 14 (05)
  • [44] Deep Self-Representation Learning Framework for Hyperspectral Anomaly Detection
    Cheng, Xi
    Zhang, Min
    Lin, Sheng
    Li, Yunsong
    Wang, Hai
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 16
  • [45] Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection
    Wang, Minghua
    Wang, Qiang
    Hong, Danfeng
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 679 - 691
  • [46] Semi-Supervised Hyperspectral Anomaly Detection Based on Spatial-Spectral Background Reconstruction
    Li Luyao
    Li Zhongwei
    Wang Leiquan
    Li Juan
    Shi Shunxiao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (20)
  • [47] HYPERSPECTRAL ANOMALY DETECTION BASED ON BACKGROUND PURIFICATION VIA DEEP AUTOENCODING GAUSSIAN MIXTURE MODEL
    Wang, Zhiyue
    Zhang, Junping
    Zhang, Ye
    Zhou, Xinyu
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7423 - 7426
  • [48] Sparse Representation Based Hyperspectral Anomaly Detection via Adaptive Background Sub-Dictionaries
    Lu, Yi
    Huang, Shucai
    IEEE ACCESS, 2021, 9 : 14735 - 14751
  • [49] Collaborative representation with background purification and saliency weight for hyperspectral anomaly detection
    Zengfu Hou
    Wei Li
    Ran Tao
    Pengge Ma
    Weihua Shi
    Science China Information Sciences, 2022, 65
  • [50] Collaborative representation with background purification and saliency weight for hyperspectral anomaly detection
    Hou, Zengfu
    Li, Wei
    Tao, Ran
    Ma, Pengge
    Shi, Weihua
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (01)