Physics-informed and data-driven modeling of an industrial wastewater treatment plant with actual validation

被引:5
|
作者
Koksal, Ece Serenat [1 ,2 ]
Asrav, Tuse [1 ,2 ]
Esenboga, Elif Ecem [3 ]
Cosgun, Ahmet [3 ]
Kusoglu, Gizem [3 ]
Aydin, Erdal [1 ,2 ]
机构
[1] Koc Univ, Dept Chem & Biol Engn, TR-34450 Istanbul, Turkiye
[2] Koc Univ, Koc Univ TUPRAS Energy Ctr KUTEM, TR-34450 Istanbul, Turkiye
[3] Turkish Petr Refineries Corp, TR-41790 Korfez, Kocaeli, Turkiye
关键词
Physics-informed neural networks; Wastewater treatment; Dissolved oxygen concentration; Chemical oxygen demand; Data-driven modeling; CHEMICAL OXYGEN-DEMAND; DISSOLVED-OXYGEN; NEURAL-NETWORK; OPTIMIZATION; CONSUMPTION; PREDICTION; OIL;
D O I
10.1016/j.compchemeng.2024.108801
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data-driven modeling is essential in chemical engineering, especially in complex systems like wastewater treatment plants. Recurrent neural networks are effective for modeling parameters in wastewater treatment process such as dissolved oxygen concentration and chemical oxygen demand due to their nonlinear adaptability. However, traditional models face challenges such as the requirement for larger datasets and more frequent sampling, noisy measurements, and overfitting. To address this, physics-informed neural networks integrate physical knowledge for improved performance. In our study, we apply both approaches to a wastewater treatment plant, enhancing prediction performance. Our results demonstrate that physics-informed models perform successfully in offline and online validation, especially when standard methods fail. They maintain effectiveness without frequent updates. Yet, integrating physics-informed knowledge can introduce noise when standard methods suffice. This result points out the need for careful consideration of model choice in different scenarios.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A comparison of physics-informed data-driven modeling architectures for motion
    Schirmann, Matthew L.
    Gose, James W.
    Collette, Matthew D.
    OCEAN ENGINEERING, 2023, 286
  • [2] Data-driven physics-informed neural networks: A digital twin perspective
    Yang, Sunwoong
    Kim, Hojin
    Hong, Yoonpyo
    Yee, Kwanjung
    Maulik, Romit
    Kang, Namwoo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [3] Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities
    de la Mata, Felix Fernandez
    Gijon, Alfonso
    Molina-Solana, Miguel
    Gomez-Romero, Juan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 610
  • [4] Physics-informed deep learning for data-driven solutions of computational fluid dynamics
    Choi, Solji
    Jung, Ikhwan
    Kim, Haeun
    Na, Jonggeol
    Lee, Jong Min
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 39 (03) : 515 - 528
  • [5] Data-driven modeling approaches to support wastewater treatment plant operation
    Duerrenmatt, David Jerome
    Gujer, Willi
    ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 30 : 47 - 56
  • [6] A physics-informed operator regression framework for extracting data-driven continuum models
    Patel, Ravi G.
    Trask, Nathaniel A.
    Wood, Mitchell A.
    Cyr, Eric C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
  • [7] Industrial Data-driven Plant Optimization Modeling
    Ohara, Kenichi
    Aoki, Jun
    Kamada, Kenichi
    2016 55TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2016, : 569 - 574
  • [8] A Regularized Physics-Informed Neural Network to Support Data-Driven Nonlinear Constrained Optimization
    Perez-Rosero, Diego Armando
    Alvarez-Meza, Andres Marino
    Castellanos-Dominguez, Cesar German
    COMPUTERS, 2024, 13 (07)
  • [9] Machine learning for metal additive manufacturing: Towards a physics-informed data-driven paradigm
    Guo, Shenghan
    Agarwal, Mohit
    Cooper, Clayton
    Tian, Qi
    Gao, Robert X.
    Grace, Weihong Guo
    Guo, Y. B.
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 62 : 145 - 163
  • [10] A Physics-informed and data-driven deep learning approach for wave propagation and its scattering characteristics
    Soo Young Lee
    Choon-Su Park
    Keonhyeok Park
    Hyung Jin Lee
    Seungchul Lee
    Engineering with Computers, 2023, 39 : 2609 - 2625