Explanatory comparative analysis of time series forecasting algorithms for air quality prediction

被引:0
作者
Qi, Dongfang [1 ]
Bure, Vladimir M. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
来源
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA | 2024年 / 20卷 / 02期
关键词
air quality; time series forecasting; neural networks; ensemble models; explainable artificial intellect;
D O I
10.21638/spbu10.2024.206
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study explores the effectiveness of time series forecasting models for predicting air quality using datasets from a Purple Air Dual Laser Air Quality Sensor and the Kaggle Online platform. These datasets contain reliable and real sensor records, ensuring the richness of information required for environmental protection. The research focuses on identifying suitable forecast models for environmental analysis, including popular algorithm structures such as neural network models and ensemble models. Moreover, the study introduces the Explainable artificial intellect method to provide explanations for models with excellent performance indicators, thereby enhancing their trust and transparency. The performance of the models was evaluated using metrics such as mean absolute error, root mean square error, and coefficient of determination (R R- squared). Results indicate that the neural network and ensemble models are effective in forecasting air quality time series. The study contributes to the body of knowledge on time series forecasting models and provides insights for future research in air quality prediction.
引用
收藏
页码:206 / 219
页数:14
相关论文
共 16 条
[1]  
Al Daoud E., 2019, International Journal of Computer and Information Engineering, V13, P6, DOI [10.5281/zenodo.3607805, DOI 10.5281/ZENODO.3607805]
[2]  
Athira V., 2018, Procedia Computer Science, V132, P1394, DOI 10.1016/j.procs.2018.05.068
[3]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[4]  
Dey R, 2017, MIDWEST SYMP CIRCUIT, P1597, DOI 10.1109/MWSCAS.2017.8053243
[5]   An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution [J].
Di, Qian ;
Amini, Heresh ;
Shi, Liuhua ;
Kloog, Itai ;
Silvern, Rachel ;
Kelly, James ;
Sabath, M. Benjamin ;
Choirat, Christine ;
Koutrakis, Petros ;
Lyapustin, Alexei ;
Wang, Yujie ;
Mickley, Loretta J. ;
Schwartz, Joel .
ENVIRONMENT INTERNATIONAL, 2019, 130
[6]   Blade-like field cathode with a dielectric coating mathematical modeling [J].
Egorov, N. V. ;
Vinogradova, E. M. ;
Doronin, G. G. .
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2023, 19 (01) :65-71
[7]   The public health context for PM2.5 and ozone air quality trends [J].
Fann, Neal ;
Risley, David .
AIR QUALITY ATMOSPHERE AND HEALTH, 2013, 6 (01) :1-11
[8]   Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks [J].
Iakushev, Viktor P. ;
Bure, Vladimir M. ;
Mitrofanova, Olga A. ;
Mitrofanov, Evgenii P. .
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2021, 17 (02) :174-182
[9]   Classifying Sources Influencing Indoor Air Quality (IAQ) Using Artificial Neural Network (ANN) [J].
Mad Saad, Shaharil ;
Andrew, Allan Melvin ;
Shakaff, Ali Yeon Md ;
Saad, Abdul Rahman Mohd ;
Kamarudin, Azman Muhamad Yusof ;
Zakaria, Ammar .
SENSORS, 2015, 15 (05) :11665-11684
[10]   What Makes an Online Review More Helpful: An Interpretation Framework Using XGBoost and SHAP Values [J].
Meng, Yuan ;
Yang, Nianhua ;
Qian, Zhilin ;
Zhang, Gaoyu .
JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH, 2021, 16 (03) :466-490