Progress in Sealed Lithium-Oxygen Batteries Based on the Oxygen Anion Charge Compensation Mechanism

被引:1
|
作者
Zeng, Linhui [1 ]
Qiao, Yu [2 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
关键词
HIGH-ENERGY-DENSITY; LI-AIR; POLYMER ELECTROLYTE; DIMETHYL-SULFOXIDE; LI-O-2; BATTERIES; DOPED LI2O; PEROXIDE; REDOX; CATHODE; NUCLEATION;
D O I
10.1021/acs.energyfuels.4c03663
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-oxygen (Li-O-2) batteries, which utilize the redox reactions of oxygen anions for charge compensation, have emerged as one of the most promising research areas due to their exceptional specific capacity and high energy density. These batteries hold the potential to drive revolutionary advances in the field of secondary batteries. However, traditional open Li-O-2 battery systems face many significant challenges, such as low capacity utilization, poor reversibility of reaction products, and issues related to electrolyte stability and safety. These challenges severely limit the performance and practical application of batteries. As a viable solution, the development of sealed Li-O-2 battery systems has effectively mitigated these issues. This review discusses the latest research progress in Li-O-2 batteries, with a focus on sealed Li-O-2 battery systems based on the oxide-peroxide (superoxide) conversion mechanism. Furthermore, it also points out promising directions for future research, including the exploration of optimized electrode structures (catalytic conductive frameworks), the development of highly compatible electrolyte systems, and the optimization of component design strategies, all aimed at unlocking the full potential of high-energy-density Li-O-2 batteries.
引用
收藏
页码:18386 / 18394
页数:9
相关论文
共 50 条
  • [21] Recent Progress on Catalysts for the Positive Electrode of Aprotic Lithium-Oxygen Batteries
    Cai, Yichao
    Hou, Yunpeng
    Lu, Yong
    Chen, Jun
    INORGANICS, 2019, 7 (06)
  • [22] Chloride Ion as Redox Mediator in Reducing Charge Overpotential of Aprotic Lithium-Oxygen Batteries
    Zhang, Qi
    Zhou, Yin
    Dai, Wenrui
    Cui, Xinhang
    Lyu, Zhiyang
    Hu, Zheng
    Chen, Wei
    BATTERIES & SUPERCAPS, 2021, 4 (01) : 232 - 239
  • [23] Recent Advances in Electrolytes for Nonaqueous Lithium-Oxygen Batteries
    Chen, Chunguang
    Liu, Jia
    Liu, Zhenqian
    Xue, Jiayi
    Cui, Xi
    Liu, Wenhan
    Cheng, Ping
    Huang, Tao
    Yu, Aishui
    CHEMICAL RECORD, 2025,
  • [24] Optimization Strategies for Cathode Materials in Lithium-Oxygen Batteries
    Li, Shang-Qi
    Yang, Jia-Ning
    Wang, Kai-Xue
    Chen, Jie-Sheng
    ACCOUNTS OF MATERIALS RESEARCH, 2024, : 1496 - 1506
  • [25] Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen
    Kwak, Won-Jin
    Kim, Hun
    Petit, Yann K.
    Leypold, Christian
    Trung Thien Nguyen
    Mahne, Nika
    Redfern, Paul
    Curtiss, Larry A.
    Jung, Hun-Gi
    Borisov, Sergey M.
    Freunberger, Stefan A.
    Sun, Yang-Kook
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [26] Morphology of the Discharge Product in Non-aqueous Lithium-Oxygen Batteries: Furrowed Toroid Particles Correspond to a Lower Charge Voltage
    Tan, Peng
    Shi, Le
    Shyy, Wei
    Zhao, Tianshou
    ENERGY TECHNOLOGY, 2016, 4 (03) : 393 - 400
  • [27] A dendrite- and oxygen-proof protective layer for lithium metal in lithium-oxygen batteries
    Kwak, Won-Jin
    Park, Jiwon
    Trung Thien Nguyen
    Kim, Hun
    Byon, Hye Ryung
    Jang, Minchul
    Sun, Yang-Kook
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) : 3857 - 3862
  • [28] Understanding the Role of Lithium Iodide in Lithium-Oxygen Batteries
    Bi, Xuanxuan
    Li, Jiantao
    Dahbi, Mouad
    Alami, Jones
    Amine, Khalil
    Lu, Jun
    ADVANCED MATERIALS, 2022, 34 (01)
  • [29] Reactive oxygen species formed in organic lithium-oxygen batteries
    Schwager, Patrick
    Dongmo, Saustin
    Fenske, Daniela
    Wittstock, Gunther
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (16) : 10774 - 10780
  • [30] Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium-Oxygen Batteries
    Asadi, Mohammad
    Kumar, Bijandra
    Liu, Cong
    Phillips, Patrick
    Yasaei, Poya
    Behranginia, Amirhossein
    Zapol, Peter
    Klie, Robert F.
    Curtiss, Larry A.
    Salehi-Khojin, Amin
    ACS NANO, 2016, 10 (02) : 2167 - 2175