共 50 条
Progress in Sealed Lithium-Oxygen Batteries Based on the Oxygen Anion Charge Compensation Mechanism
被引:1
|作者:
Zeng, Linhui
[1
]
Qiao, Yu
[2
]
机构:
[1] Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
关键词:
HIGH-ENERGY-DENSITY;
LI-AIR;
POLYMER ELECTROLYTE;
DIMETHYL-SULFOXIDE;
LI-O-2;
BATTERIES;
DOPED LI2O;
PEROXIDE;
REDOX;
CATHODE;
NUCLEATION;
D O I:
10.1021/acs.energyfuels.4c03663
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Lithium-oxygen (Li-O-2) batteries, which utilize the redox reactions of oxygen anions for charge compensation, have emerged as one of the most promising research areas due to their exceptional specific capacity and high energy density. These batteries hold the potential to drive revolutionary advances in the field of secondary batteries. However, traditional open Li-O-2 battery systems face many significant challenges, such as low capacity utilization, poor reversibility of reaction products, and issues related to electrolyte stability and safety. These challenges severely limit the performance and practical application of batteries. As a viable solution, the development of sealed Li-O-2 battery systems has effectively mitigated these issues. This review discusses the latest research progress in Li-O-2 batteries, with a focus on sealed Li-O-2 battery systems based on the oxide-peroxide (superoxide) conversion mechanism. Furthermore, it also points out promising directions for future research, including the exploration of optimized electrode structures (catalytic conductive frameworks), the development of highly compatible electrolyte systems, and the optimization of component design strategies, all aimed at unlocking the full potential of high-energy-density Li-O-2 batteries.
引用
收藏
页码:18386 / 18394
页数:9
相关论文