Frequency-tunable microwave quantum light source based on superconducting quantum circuits

被引:1
作者
Li, Yan [1 ]
Wang, Zhiling [1 ]
Bao, Zenghui [1 ]
Wu, Yukai [1 ,2 ]
Wang, Jiahui [1 ]
Yang, Jize [1 ]
Xiong, Haonan [1 ]
Song, Yipu [1 ,2 ]
Zhang, Hongyi [1 ,2 ]
Duan, Luming [1 ,2 ]
机构
[1] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
来源
CHIP | 2023年 / 2卷 / 03期
关键词
ERROR-CORRECTION; STATE TRANSFER; ENTANGLEMENT; GENERATION; INFORMATION;
D O I
10.1016/j.chip.2023.100063
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A non-classical light source is essential for implementing a wide range of quantum information processing protocols, including quantum computing, networking, communication and metrology. In the microwave regime, propagating photonic qubits, which transfer quantum information between multiple superconducting quantum chips, serve as building blocks for large-scale quantum computers. In this context, spectral control of propagating single photons is crucial for interfacing different quantum nodes with varied frequencies and bandwidths. Here a deterministic microwave quantum light source was demonstrated based on superconducting quantum circuits that can generate propagating single photons, time-bin encoded photonic qubits and qudits. In particular, the frequency of the emitted photons can be tuned in situ as large as 200 MHz. Even though the internal quantum efficiency of the light source is sensitive to the working frequency, it is shown that the fidelity of the propagating photonic qubit can be well preserved with the time-bin encoding scheme. This work thus demonstrates a versatile approach to realizing a practical quantum light source for future distributed quantum computing.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Hybrid waveguide scheme for silicon-based quantum photonic circuits with quantum light sources
    Yu, Lingjie
    Yuan, Chenzhi
    Qi, Renduo
    Huang, Yidong
    Zhang, Wei
    PHOTONICS RESEARCH, 2020, 8 (03) : 235 - 245
  • [22] A topological source of quantum light
    Mittal, Sunil
    Goldschmidt, Elizabeth A.
    Hafezi, Mohammad
    NATURE, 2018, 561 (7724) : 502 - +
  • [23] Thermocompression bonding technology for multilayer superconducting quantum circuits
    Mcrae, C. R. H.
    Bejanin, J. H.
    Pagel, Z.
    Abdallah, A. O.
    McConkey, T. G.
    Earnest, C. T.
    Rinehart, J. R.
    Mariantoni, M.
    APPLIED PHYSICS LETTERS, 2017, 111 (12)
  • [24] Robust and Fast Quantum State Transfer on Superconducting Circuits
    Liu, X. -Q.
    Liu, J.
    Xue, Z. -Y.
    JETP LETTERS, 2023, 117 (11) : 859 - 864
  • [25] Controlled-squeeze gate in superconducting quantum circuits
    Del Grosso, Nicolas F.
    Cortinas, Rodrigo G.
    Villar, Paula I.
    Lombardo, Fernando C.
    Paz, Juan Pablo
    PHYSICAL REVIEW A, 2025, 111 (04)
  • [26] Simulating Zeno physics by a quantum quench with superconducting circuits
    Tong, Qing-Jun
    An, Jun-Hong
    Kwek, L. C.
    Luo, Hong-Gang
    Oh, C. H.
    PHYSICAL REVIEW A, 2014, 89 (06):
  • [27] Atomic physics and quantum optics using superconducting circuits
    You, J. Q.
    Nori, Franco
    NATURE, 2011, 474 (7353) : 589 - 597
  • [28] Cavity grid for scalable quantum computation with superconducting circuits
    Helmer, F.
    Mariantoni, M.
    Fowler, A. G.
    von Delft, J.
    Solano, E.
    Marquardt, F.
    EPL, 2009, 85 (05)
  • [29] Fabrication technology of and symmetry breaking in superconducting quantum circuits
    Niemczyk, T.
    Deppe, F.
    Mariantoni, M.
    Menzel, E. P.
    Hoffmann, E.
    Wild, G.
    Eggenstein, L.
    Marx, A.
    Gross, R.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2009, 22 (03)
  • [30] Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits
    Cho, K. -H.
    Patel, U.
    Podkaminer, J.
    Gao, Y.
    Folkman, C. M.
    Bark, C. W.
    Lee, S.
    Zhang, Y.
    Pan, X. Q.
    McDermott, R.
    Eom, C. B.
    APL MATERIALS, 2013, 1 (04):