Frequency-tunable microwave quantum light source based on superconducting quantum circuits

被引:1
|
作者
Li, Yan [1 ]
Wang, Zhiling [1 ]
Bao, Zenghui [1 ]
Wu, Yukai [1 ,2 ]
Wang, Jiahui [1 ]
Yang, Jize [1 ]
Xiong, Haonan [1 ]
Song, Yipu [1 ,2 ]
Zhang, Hongyi [1 ,2 ]
Duan, Luming [1 ,2 ]
机构
[1] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
来源
CHIP | 2023年 / 2卷 / 03期
关键词
ERROR-CORRECTION; STATE TRANSFER; ENTANGLEMENT; GENERATION; INFORMATION;
D O I
10.1016/j.chip.2023.100063
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A non-classical light source is essential for implementing a wide range of quantum information processing protocols, including quantum computing, networking, communication and metrology. In the microwave regime, propagating photonic qubits, which transfer quantum information between multiple superconducting quantum chips, serve as building blocks for large-scale quantum computers. In this context, spectral control of propagating single photons is crucial for interfacing different quantum nodes with varied frequencies and bandwidths. Here a deterministic microwave quantum light source was demonstrated based on superconducting quantum circuits that can generate propagating single photons, time-bin encoded photonic qubits and qudits. In particular, the frequency of the emitted photons can be tuned in situ as large as 200 MHz. Even though the internal quantum efficiency of the light source is sensitive to the working frequency, it is shown that the fidelity of the propagating photonic qubit can be well preserved with the time-bin encoding scheme. This work thus demonstrates a versatile approach to realizing a practical quantum light source for future distributed quantum computing.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems
    Magnard, P.
    Storz, S.
    Kurpiers, P.
    Schaer, J.
    Marxer, F.
    Luetolf, J.
    Walter, T.
    Besse, J-C
    Gabureac, M.
    Reuer, K.
    Akin, A.
    Royer, B.
    Blais, A.
    Wallraff, A.
    PHYSICAL REVIEW LETTERS, 2020, 125 (26)
  • [12] Multilayer microwave integrated quantum circuits for scalable quantum computing
    Brecht, Teresa
    Pfaff, Wolfgang
    Wang, Chen
    Chu, Yiwen
    Frunzio, Luigi
    Devoret, Michel H.
    Schoelkopf, Robert J.
    NPJ QUANTUM INFORMATION, 2016, 2
  • [13] Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits
    Feng, Wei
    Wang, Da-Wei
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [14] Superconducting Quantum Node for Entanglement and Storage of Microwave Radiation
    Flurin, E.
    Roch, N.
    Pillet, J. D.
    Mallet, F.
    Huard, B.
    PHYSICAL REVIEW LETTERS, 2015, 114 (09)
  • [15] Superconducting microwave cavities and qubits for quantum information systems
    Krasnok, Alex
    Dhakal, Pashupati
    Fedorov, Arkady
    Frigola, Pedro
    Kelly, Michael
    Kutsaev, Sergey
    APPLIED PHYSICS REVIEWS, 2024, 11 (01)
  • [16] Quantum information processing with superconducting circuits: a review
    Wendin, G.
    REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (10)
  • [17] Frequency-Tunable THz Source Based on Stimulated Polariton Scattering in Mg:LiNbO3
    Lee, Andrew
    He, Yabai
    Pask, Helen
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2013, 49 (03) : 357 - 364
  • [18] Microwave-optical quantum frequency conversion
    Han, Xu
    Fu, Wei
    Zou, Chang-Ling
    Jiang, Liang
    Tang, Hong X.
    OPTICA, 2021, 8 (08): : 1050 - 1064
  • [19] Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements
    de Lange, G.
    van Heck, B.
    Bruno, A.
    van Woerkom, D. J.
    Geresdi, A.
    Plissard, S. R.
    Bakkers, E. P. A. M.
    Akhmerov, A. R.
    DiCarlo, L.
    PHYSICAL REVIEW LETTERS, 2015, 115 (12)
  • [20] Hybrid waveguide scheme for silicon-based quantum photonic circuits with quantum light sources
    Yu, Lingjie
    Yuan, Chenzhi
    Qi, Renduo
    Huang, Yidong
    Zhang, Wei
    PHOTONICS RESEARCH, 2020, 8 (03) : 235 - 245