A Remark on Concept Drift for Dependent Data

被引:3
|
作者
Hinder, Fabian [1 ]
Vaquet, Valerie [1 ]
Hammer, Barbara [1 ]
机构
[1] Bielefeld Univ, CITEC, Bielefeld, Germany
来源
ADVANCES IN INTELLIGENT DATA ANALYSIS XXII, PT I, IDA 2024 | 2024年 / 14641卷
关键词
Concept Drift; Dependent Data; Concept Drift Detection; TIME-SERIES; CONVERGENCE;
D O I
10.1007/978-3-031-58547-0_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Concept drift, i.e., the change of the data generating distribution, can render machine learning models inaccurate. Several works address the phenomenon of concept drift in the streaming context usually assuming that consecutive data points are independent of each other. To generalize to dependent data, many authors link the notion of concept drift to time series. In this work, we show that the temporal dependencies are strongly influencing the sampling process. Thus, the used definitions need major modifications. In particular, we show that the notion of stationarity is not suited for this setup and discuss an alternative we refer to as consistency. We demonstrate that consistency better describes the observable learning behavior in numerical experiments.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [1] Detecting concept drift using HEDDM in data stream
    Dongre, Snehlata S.
    Malik, Latesh G.
    Thomas, Achamma
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2019, 7 (2-3) : 164 - 179
  • [2] Streaming Data Classification with Concept Drift
    Althabiti, Mashail
    Abdullah, Manal
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2019, 12 (01): : 177 - 184
  • [3] Classification of concept drift data streams
    Padmalatha, E.
    Reddy, C. R. K.
    Rani, B. Padmaja
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA), 2014,
  • [4] Multidimensional surrogate stability to detect data stream concept drift
    da Costa, Fausto G.
    Duarte, Felipe S. L. G.
    Vallim, Rosane M. M.
    de Mello, Rodrigo F.
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 87 : 15 - 29
  • [5] Handling Concept Drift in Data Streams by Using Drift Detection Methods
    Patil, Malini M.
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2018, VOL 2, 2019, 839 : 155 - 166
  • [6] ENSEMBLE ALGORITHM FOR DATA STREAMS WITH CONCEPT DRIFT
    Tase, R. O. R.
    Cabrera, A. V.
    Naranjo, D. L. O.
    Diaz, A. A. O.
    Blanco, I. F.
    HOLOS, 2016, 32 (02) : 24 - 36
  • [7] Handling adversarial concept drift in streaming data
    Sethi, Tegjyot Singh
    Kantardzic, Mehmed
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 97 : 18 - 40
  • [8] Concept Drift Detection for Evolving Stream Data
    Lee, Jeonghoon
    Lee, Yoon-Joon
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (11) : 2288 - 2292
  • [9] Uncertain Data Stream Classification with Concept Drift
    Lv Yanxia
    Wang Cuirong
    Wang Cong
    Liu Bingyu
    2016 FOURTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD 2016), 2016, : 265 - +
  • [10] Heuristic Regression Function Estimation Methods for Data Streams with Concept Drift
    Jaworski, Maciej
    Duda, Piotr
    Rutkowski, Leszek
    Najgebauer, Patryk
    Pawlak, Miroslaw
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT II, 2017, 10246 : 726 - 737