Exploring the differences between Multi-task and Single-task with the use of hxplainable AI for lung nodule classification

被引:0
作者
Fernandes, Luis [1 ]
Pereira, Tania [2 ]
Oliveira, Helder P. [3 ]
机构
[1] FEUP, INESC TEC, Porto, Portugal
[2] INESC TEC, FCTUC, Coimbra, Portugal
[3] INESC TEC, FCUP, Porto, Portugal
来源
2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024 | 2024年
关键词
Lung cancer; CT scans; Lung nodule classification; Explainable AI; Multitasking;
D O I
10.1109/CBMS61543.2024.00075
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Currently, lung cancer is one of the deadliest diseases that affects millions of people globally. However, Artificial Intelligence is being increasingly integrated with healthcare practices, with the goal to aid in the early diagnosis of lung cancer. Although such methods have shown very promising results, they still lack transparency to the user, which consequently could make their generalised adoption a challenging task. Therefore, in this work we explore the use of post-hoc explainable methods, to better understand the inner-workings of an already established multitasking framework that executes the segmentation and the classification task of lung nodules simultaneously. The idea behind such study is to understand how a multitasking approach impacts the model's performance in the lung nodule classification task when compared to single-task models. Our results show that the multitasking approach works as an attention mechanism by aiding the model to learn more meaningful features. Furthermore, the multitasking framework was able to achieve a better performance in regard to the explainability metric, with an increase of 7% when compared to our baseline, and also during the classification and segmentation task, with an increase of 4.84% and 15.03%; for each task respectively, when also compared to the studied baselines.
引用
收藏
页码:418 / 423
页数:6
相关论文
共 22 条
[1]   Gated-Dilated Networks for Lung Nodule Classification in CT Scans [J].
Al-Shabi, Mundher ;
Lee, Hwee Kuan ;
Tan, Maxine .
IEEE ACCESS, 2019, 7 :178827-178838
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[4]  
Chen CF, 2019, ADV NEUR IN, V32
[5]  
Fernandes Luis, 2023, 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), P3874, DOI 10.1109/BIBM58861.2023.10385868
[6]  
Hedstrom A., 2023, Journal of Machine Learning Research, V24, P1
[7]   Enhancing lung abnormalities detection and classification using a Deep Convolutional Neural Network and GRU with explainable AI: A promising approach for accurate diagnosis [J].
Islam, Md Khairul ;
Rahman, Md Mahbubur ;
Ali, Md Shahin ;
Mahim, S. M. ;
Miah, Md Sipon .
MACHINE LEARNING WITH APPLICATIONS, 2023, 14
[8]   Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping [J].
Lei, Yiming ;
Tian, Yukun ;
Shan, Hongming ;
Zhang, Junping ;
Wang, Ge ;
Kalra, Mannudeep K. .
MEDICAL IMAGE ANALYSIS, 2020, 60
[9]  
Lundberg SM, 2017, ADV NEUR IN, V30
[10]   Robustness Analysis of Deep Learning-Based Lung Cancer Classification Using Explainable Methods [J].
Malafaia, Mafalda ;
Silva, Francisco ;
Neves, Ines ;
Pereira, Tania ;
Oliveira, Helder P. .
IEEE ACCESS, 2022, 10 :112731-112741