Hankel and Toeplitz Determinants of Logarithmic Coefficients of Inverse Functions for Certain Classes of Univalent Functions

被引:0
|
作者
Mandal, Sanju [1 ]
Roy, Partha Pratim [1 ]
Ahamed, Molla Basir [1 ]
机构
[1] Jadavpur Univ, Kolkata, West Bengal, India
关键词
Univalent functions; Starlike functions; Convex functions; Hankel determinant; Toeplitz determinant; Logarithmic coefficients; Schwarz functions; Inverse functions;
D O I
10.1007/s40995-024-01717-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hankel and Toeplitz determinants H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} and T2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2)$$\end{document} are defined as: H2,1(Ff-1/2):=Gamma 1 Gamma 3-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2):=\Gamma _{1}\Gamma _{3} -\Gamma <^>2_{2}$$\end{document} and T2,1(Ff-1/2):=Gamma 12-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2):=\Gamma <^>2_{1}-\Gamma <^>2_{2}$$\end{document}, where Gamma 1,Gamma 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _1, \Gamma _2,$$\end{document} and Gamma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _3$$\end{document} are the first, second and third logarithmic coefficients of inverse functions belonging to the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} of normalized univalent functions. In this article, we establish sharp inequalities |H2,1(Ff-1/2)|<= 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)|\le 1/4$$\end{document}, |H2,1(Ff-1/2)|<= 1/36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)| \le 1/36$$\end{document}, |T2,1(Ff-1/2)|<= 5/16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 5/16$$\end{document} and |T2,1(Ff-1/2)|<= 145/2304\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 145/2304$$\end{document} for the logarithmic coefficients of inverse functions for the classes of starlike functions and convex functions with respect to symmetric points. The results show an invariance property of the second Hankel determinants H2,1(Ff/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f}/2)$$\end{document} and H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} of logarithmic coefficients for the classes SS & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}<^>*_S$$\end{document} and KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_S$$\end{document}. Moreover, we exhibit examples showing that the strict inequality in the main results hold.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [41] On logarithmic coefficients for classes of analytic functions associated with convex functions
    Allu, Vasudevarao
    Sharma, Navneet Lal
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191
  • [42] Third Hankel determinants for two classes of analytic functions with real coefficients
    Sim, Young Jae
    Zaprawa, Pawel
    FORUM MATHEMATICUM, 2021, 33 (04) : 973 - 986
  • [43] Logarithmic Coefficients for Classes Related to Convex Functions
    Alimohammadi, Davood
    Adegani, Ebrahim Analouei
    Bulboaca, Teodor
    Cho, Nak Eun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2659 - 2673
  • [44] Logarithmic Coefficients for Classes Related to Convex Functions
    Davood Alimohammadi
    Ebrahim Analouei Adegani
    Teodor Bulboacă
    Nak Eun Cho
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2659 - 2673
  • [45] Coefficient Inequalities of Second Hankel Determinants for Some Classes of Bi-Univalent Functions
    Sharma, Rayaprolu Bharavi
    Laxmi, Kalikota Rajya
    MATHEMATICS, 2016, 4 (01):
  • [46] On the upper bounds of Hankel determinants for some subclasses of univalent functions associated with sine functions
    Kamali, Muhammet
    Riskulava, Alina
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2024, 14 (01): : 41 - 49
  • [47] Hermitian Toeplitz Determinant for Certain Meromorphic Univalent Functions
    John, Alana
    Parveen, Firdoshi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (02)
  • [48] Certain inequalities related with Hankel and Toeplitz determinant for q-starlike functions
    Gul, Ihtesham
    Al-Sa'di, Sa'ud
    Hussain, Saqib
    Noor, Saima
    HELIYON, 2024, 10 (10)
  • [49] INITIAL SUCCESSIVE COEFFICIENTS FOR CERTAIN CLASSES OF UNIVALENT FUNCTIONS INVOLVING THE EXPONENTIAL FUNCTION
    Shi, Lei
    Wang, Zhi-Gang
    Su, Ren-Li
    Arif, Muhammad
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 1183 - 1201
  • [50] CERTAIN PROPERTIES OF THE CLASS OF UNIVALENT FUNCTIONS WITH REAL COEFFICIENTS
    Obradovic, Milutin
    Tuneski, Nikola
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1253 - 1263