Hankel and Toeplitz Determinants of Logarithmic Coefficients of Inverse Functions for Certain Classes of Univalent Functions

被引:0
|
作者
Mandal, Sanju [1 ]
Roy, Partha Pratim [1 ]
Ahamed, Molla Basir [1 ]
机构
[1] Jadavpur Univ, Kolkata, West Bengal, India
关键词
Univalent functions; Starlike functions; Convex functions; Hankel determinant; Toeplitz determinant; Logarithmic coefficients; Schwarz functions; Inverse functions;
D O I
10.1007/s40995-024-01717-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hankel and Toeplitz determinants H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} and T2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2)$$\end{document} are defined as: H2,1(Ff-1/2):=Gamma 1 Gamma 3-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2):=\Gamma _{1}\Gamma _{3} -\Gamma <^>2_{2}$$\end{document} and T2,1(Ff-1/2):=Gamma 12-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2):=\Gamma <^>2_{1}-\Gamma <^>2_{2}$$\end{document}, where Gamma 1,Gamma 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _1, \Gamma _2,$$\end{document} and Gamma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _3$$\end{document} are the first, second and third logarithmic coefficients of inverse functions belonging to the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} of normalized univalent functions. In this article, we establish sharp inequalities |H2,1(Ff-1/2)|<= 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)|\le 1/4$$\end{document}, |H2,1(Ff-1/2)|<= 1/36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)| \le 1/36$$\end{document}, |T2,1(Ff-1/2)|<= 5/16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 5/16$$\end{document} and |T2,1(Ff-1/2)|<= 145/2304\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 145/2304$$\end{document} for the logarithmic coefficients of inverse functions for the classes of starlike functions and convex functions with respect to symmetric points. The results show an invariance property of the second Hankel determinants H2,1(Ff/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f}/2)$$\end{document} and H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} of logarithmic coefficients for the classes SS & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}<^>*_S$$\end{document} and KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_S$$\end{document}. Moreover, we exhibit examples showing that the strict inequality in the main results hold.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [31] A sharp inequality for the logarithmic coefficients of univalent functions
    Roth, Oliver
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (07) : 2051 - 2054
  • [32] Bounds for Hermitian Toeplitz and Hankel Determinants for a Certain Subclass of Analytic Functions Related to the Sine Function
    Thulasiram, Thatamsetty
    Kalaiselvan, Sekar
    Breaz, Daniel
    Suchithra, Kuppuswamy
    Sudharsan, Thirumalai Vinjimur
    SYMMETRY-BASEL, 2025, 17 (03):
  • [33] Hankel, Toeplitz, and Hermitian-Toeplitz Determinants for Certain Close-to-convex Functions
    Allu, Vasudevarao
    Lecko, Adam
    Thomas, Derek K.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [34] Hankel, Toeplitz, and Hermitian-Toeplitz Determinants for Certain Close-to-convex Functions
    Vasudevarao Allu
    Adam Lecko
    Derek K. Thomas
    Mediterranean Journal of Mathematics, 2022, 19
  • [35] THIRD ORDER HANKEL DETERMINANT FOR CERTAIN UNIVALENT FUNCTIONS
    Bansal, Deepak
    Maharana, Sudhananda
    Prajapat, Jugal Kishore
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (06) : 1139 - 1148
  • [36] SHARP BOUNDS ON THE HANKEL DETERMINANT OF THE INVERSE FUNCTIONS FOR CERTAIN ANALYTIC FUNCTIONS
    Shi, Lei
    Arif, Muhammad
    Srivastava, H. M.
    Ishan, Muhammad
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (03): : 1129 - 1143
  • [37] SECOND HANKEL DETERMINANT FOR LOGARITHMIC INVERSE COEFFICIENTS OF CONVEX AND STARLIKE FUNCTIONS
    Allu, Vasudevarao
    Shaji, Amal
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, : 128 - 139
  • [38] SUCCESSIVE COEFFICIENTS AND TOEPLITZ DETERMINANT FOR CONCAVE UNIVALENT FUNCTIONS
    Bhowmik, Bappaditya
    John, Alana
    Parveen, Firdoshi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02): : 459 - 469
  • [39] Hermitian Toeplitz determinants for the class S of univalent functions
    Obradovi, M.
    Tuneski, N.
    ARMENIAN JOURNAL OF MATHEMATICS, 2021, 13 (04): : 1 - 10
  • [40] Results on Hankel Determinants for the Inverse of Certain Analytic Functions Subordinated to the Exponential Function
    Shi, Lei
    Srivastava, Hari M.
    Rafiq, Ayesha
    Arif, Muhammad
    Ihsan, Muhammad
    MATHEMATICS, 2022, 10 (19)