Hankel and Toeplitz Determinants of Logarithmic Coefficients of Inverse Functions for Certain Classes of Univalent Functions

被引:0
|
作者
Mandal, Sanju [1 ]
Roy, Partha Pratim [1 ]
Ahamed, Molla Basir [1 ]
机构
[1] Jadavpur Univ, Kolkata, West Bengal, India
关键词
Univalent functions; Starlike functions; Convex functions; Hankel determinant; Toeplitz determinant; Logarithmic coefficients; Schwarz functions; Inverse functions;
D O I
10.1007/s40995-024-01717-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hankel and Toeplitz determinants H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} and T2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2)$$\end{document} are defined as: H2,1(Ff-1/2):=Gamma 1 Gamma 3-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2):=\Gamma _{1}\Gamma _{3} -\Gamma <^>2_{2}$$\end{document} and T2,1(Ff-1/2):=Gamma 12-Gamma 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2,1}(F_{f<^>{-1}}/2):=\Gamma <^>2_{1}-\Gamma <^>2_{2}$$\end{document}, where Gamma 1,Gamma 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _1, \Gamma _2,$$\end{document} and Gamma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _3$$\end{document} are the first, second and third logarithmic coefficients of inverse functions belonging to the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} of normalized univalent functions. In this article, we establish sharp inequalities |H2,1(Ff-1/2)|<= 1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)|\le 1/4$$\end{document}, |H2,1(Ff-1/2)|<= 1/36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H_{2,1}(F_{f<^>{-1}}/2)| \le 1/36$$\end{document}, |T2,1(Ff-1/2)|<= 5/16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 5/16$$\end{document} and |T2,1(Ff-1/2)|<= 145/2304\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|T_{2,1}(F_{f<^>{-1}}/2)|\le 145/2304$$\end{document} for the logarithmic coefficients of inverse functions for the classes of starlike functions and convex functions with respect to symmetric points. The results show an invariance property of the second Hankel determinants H2,1(Ff/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f}/2)$$\end{document} and H2,1(Ff-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2,1}(F_{f<^>{-1}}/2)$$\end{document} of logarithmic coefficients for the classes SS & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}<^>*_S$$\end{document} and KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_S$$\end{document}. Moreover, we exhibit examples showing that the strict inequality in the main results hold.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [11] Initial Successive Coefficients for Certain Classes of Univalent Functions
    Vibhuti Arora
    Lobachevskii Journal of Mathematics, 2022, 43 : 2080 - 2091
  • [12] CERTAIN CLASSES OF UNIVALENT FUNCTIONS HAVING NEGATIVE COEFFICIENTS
    Jain, Vanita
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 5 (01): : 37 - 52
  • [13] SECOND HANKEL DETERMINANT OF THE LOGARITHMIC COEFFICIENTS FOR A SUBCLASS OF UNIVALENT FUNCTIONS
    Srivastava, Hari mohan
    Eker, Sevtap sumer
    Seker, Bilal
    Cekic, Bilal
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 479 - 488
  • [14] Hermitian-Toeplitz determinants for certain univalent functions
    Giri, Surya
    Kumar, S. Sivaprasad
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)
  • [15] SECOND-HANKEL DETERMINANT OF LOGARITHMIC COEFFICIENTS OF CERTAIN ANALYTIC FUNCTIONS
    Allu, Vasudevarao
    Arora, Vibhuti
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (02) : 343 - 359
  • [16] Hermitian-Toeplitz and Hankel determinants for certain starlike functions
    Cho, Nak Eun
    Kumar, Sushil
    Kumar, Virendra
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (03)
  • [17] Bounds for Certain Determinants of Logarithmic Coefficients for the Class of Functions with Bounded Turning
    Wahid, Nur Hazwani Aqilah Abdul
    Amirnuddin, Ilya Qursiah
    Azmi, Nurul Izzah Mohammad
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 2738 - 2752
  • [18] Third Hankel Determinants for Subclasses of Univalent Functions
    Zaprawa, Pawel
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)
  • [19] Third Hankel Determinants for Subclasses of Univalent Functions
    Paweł Zaprawa
    Mediterranean Journal of Mathematics, 2017, 14
  • [20] Moduli difference of inverse logarithmic coefficients of univalent functions
    Allu, Vasudevarao
    Shaji, Amal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)