Development of a GUI for Automated Classification of Scientific Journal Articles using clustering

被引:0
作者
Sateesh, Nayani [1 ]
Kaur, Kuljeet [2 ]
Lakshminarayana, M. [3 ]
Vekariya, Vipul [4 ]
Patil, Harshal [5 ]
Maranan, Ramya [6 ]
机构
[1] CVR Coll Engn, Dept Comp Sci & Engn, Hyderabad 501510, Telangana, India
[2] Graph Era Deemed Be Univ, Dept Management, Dehra Dun 248002, Uttarakhand, India
[3] MS Ramaiah Inst Technol, Dept Med Elect Engn, Bengaluru 560054, Karnataka, India
[4] Parul Univ, Parul Inst Engn & Technol, Dept Comp Sci & Engn, Waghodia 391760, Gujarat, India
[5] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Dept Comp Sci & Engn, Pune 412115, Maharashtra, India
[6] SIMATS, Saveetha Sch Engn, Dept Res & Innovat, Chennai 602105, Tamil Nadu, India
来源
2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024 | 2024年
关键词
Automated Categorization; Scientific Journal Articles; Natural Language Processing; Machine Learning; Textual Analysis; Information Retrieval; Knowledge Management; Classification Algorithm; TEXT CLASSIFICATION;
D O I
10.1109/ICITIIT61487.2024.10580528
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ever-expanding volume of scientific literature necessitates innovative solutions for efficient information organization and retrieval. This final qualifying work focuses on the development of a robust algorithm for the automated categorization of articles in a scientific journal. The primary objective is to streamline the process of classifying diverse research contributions, thereby enhancing accessibility and knowledge discovery within scholarly domains. The goal of the final qualifying work is to develop an algorithm for automated categorization of articles in a scientific journal. To achieve this goal, an application is developed for the administrator of a scientific journal, allowing for the preparation, classification and visualization of data.
引用
收藏
页数:6
相关论文
共 15 条
  • [1] Automated Text Classification of News Articles: A Practical Guide
    Barbera, Pablo
    Boydstun, Amber E.
    Linn, Suzanna
    McMahon, Ryan
    Nagler, Jonathan
    [J]. POLITICAL ANALYSIS, 2021, 29 (01) : 19 - 42
  • [2] Automated classification of social network messages into Smart Cities dimensions
    Bencke, Luciana
    Cechinel, Cristian
    Munoz, Roberto
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 109 : 218 - 237
  • [3] Using Word Order in Political Text Classification with Long Short-term Memory Models
    Chang, Charles
    Masterson, Michael
    [J]. POLITICAL ANALYSIS, 2020, 28 (03) : 395 - 411
  • [4] Monitoring the public opinion about the vaccination topic from tweets analysis
    D'Andrea, Eleonora
    Ducange, Pietro
    Bechini, Alessio
    Renda, Alessandro
    Marcelloni, Francesco
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 209 - 226
  • [5] A gating context-aware text classification model with BERT and graph convolutional networks
    Gao, Weiqi
    Huang, Hao
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 4331 - 4343
  • [6] Using Social Media to Mine and Analyze Public Opinion Related to COVID-19 in China
    Han, Xuehua
    Wang, Juanle
    Zhang, Min
    Wang, Xiaojie
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (08)
  • [7] Comparing automated text classification methods
    Hartmann, Jochen
    Huppertz, Juliana
    Schamp, Christina
    Heitmann, Mark
    [J]. INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING, 2019, 36 (01) : 20 - 38
  • [8] Distributed Framework for Automating Opinion Discretization From Text Corpora on Facebook
    Hiep Xuan Huynh
    Vu Tuan Nguyen
    Nghia Duong-Trung
    Van-Huy Pham
    Cang Thuong Phan
    [J]. IEEE ACCESS, 2019, 7 : 78675 - 78684
  • [9] GHS-NET a generic hybridized shallow neural network for multi-label biomedical text classification
    Ibrahim, Muhammad Ali
    Khan, Muhammad Usman Ghani
    Mehmood, Faiza
    Asim, Muhammad Nabeel
    Mahmood, Waqar
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 116
  • [10] Bi-LSTM Model to Increase Accuracy in Text Classification: Combining Word2vec CNN and Attention Mechanism
    Jang, Beakcheol
    Kim, Myeonghwi
    Harerimana, Gaspard
    Kang, Sang-ug
    Kim, Jong Wook
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (17):