On construction of asymptotically correct confidence intervals

被引:10
|
作者
Xiong, Shifeng [1 ]
Mu, Weiyan [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100864, Peoples R China
[2] Beijing Inst Technol, Dept Math, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Confidence interval; Coverage; Structural method; Two-sample problem; BINOMIAL PROPORTION;
D O I
10.1016/j.jspi.2008.08.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we discuss constructing confidence intervals based on asymptotic generalized pivotal quantities (AGPQs). An AGPQ associates a distribution with the corresponding parameter, and then an asymptotically correct confidence interval can be derived directly from this distribution like Bayesian or fiducial interval estimates. We provide two general procedures for constructing AGPQs. We also present several examples to show that AGPQs can yield new confidence intervals with better finite-sample behaviors than traditional methods. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1394 / 1404
页数:11
相关论文
共 50 条
  • [31] Confidence intervals for nonparametric regression
    Brown, Lawrence D.
    Fu, Xin
    Zhao, Linda H.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (01) : 149 - 163
  • [32] Exact confidence coefficients of confidence intervals for a binomial proportion
    Wang, Hsiuying
    STATISTICA SINICA, 2007, 17 (01) : 361 - 368
  • [33] Comparison of Poisson confidence intervals
    Byrne, J
    Kabaila, P
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (03) : 545 - 556
  • [34] Exact 95% confidence intervals for differences in binomial proportions
    Fagan, T
    COMPUTERS IN BIOLOGY AND MEDICINE, 1999, 29 (01) : 83 - 87
  • [35] ON CONFIDENCE INTERVALS FOR BINOMIAL PAREMETER
    Janiga, Ivan
    APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT I, 2007, : 371 - 377
  • [36] Fiducial generalized confidence intervals
    Hannig, J
    Iyer, H
    Patterson, P
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) : 254 - 269
  • [37] The cost of using exact confidence intervals for a binomial proportion
    Thulin, Mans
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 817 - 840
  • [38] Evidential Calibration of Confidence Intervals
    Pawel, Samuel
    Ly, Alexander
    Wagenmakers, Eric-Jan
    AMERICAN STATISTICIAN, 2024, 78 (01) : 47 - 57
  • [39] Generalised Clopper-Pearson confidence intervals for the binomial proportion
    Puza, B
    O'Neill, T
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (06) : 489 - 508
  • [40] Tandem-width sequential confidence intervals for a Bernoulli proportion
    Yaacoub, Tony
    Goldsman, David
    Mei, Yajun
    Moustakides, George, V
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2019, 38 (02): : 163 - 183