On construction of asymptotically correct confidence intervals

被引:10
|
作者
Xiong, Shifeng [1 ]
Mu, Weiyan [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100864, Peoples R China
[2] Beijing Inst Technol, Dept Math, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Confidence interval; Coverage; Structural method; Two-sample problem; BINOMIAL PROPORTION;
D O I
10.1016/j.jspi.2008.08.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we discuss constructing confidence intervals based on asymptotic generalized pivotal quantities (AGPQs). An AGPQ associates a distribution with the corresponding parameter, and then an asymptotically correct confidence interval can be derived directly from this distribution like Bayesian or fiducial interval estimates. We provide two general procedures for constructing AGPQs. We also present several examples to show that AGPQs can yield new confidence intervals with better finite-sample behaviors than traditional methods. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1394 / 1404
页数:11
相关论文
共 50 条
  • [21] INTERPOLATED NONPARAMETRIC PREDICTION INTERVALS AND CONFIDENCE-INTERVALS
    BERAN, R
    HALL, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1993, 55 (03): : 643 - 652
  • [22] Meta-analysis: Confidence intervals and Prediction intervals
    Botella, Juan
    Sanchez-Meca, Julio
    ANALES DE PSICOLOGIA, 2024, 40 (02): : 344 - 354
  • [23] Confidence intervals for the proportion of conformance
    Lee, Chung-Han
    Wang, Hsiuying
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (08) : 1564 - 1579
  • [24] Improved confidence intervals for quantiles
    Maesono, Yoshihiko
    Penev, Spiridon
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (01) : 167 - 189
  • [25] Confidence intervals that utilize sparsity
    Kabaila, Paul
    Farchione, David
    STAT, 2022, 11 (01):
  • [26] Confidence intervals for the tail index
    Cheng, SH
    Peng, L
    BERNOULLI, 2001, 7 (05) : 751 - 760
  • [27] Confidence intervals in Cavalieri sampling
    Garcia-Finana, M.
    JOURNAL OF MICROSCOPY, 2006, 222 : 146 - 157
  • [28] Confidence Intervals in Reliability Database
    Slivka, Martin
    Gono, Radomir
    Rusek, Stanislav
    2014 14TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC), 2014, : 423 - 425
  • [29] Improved confidence intervals for quantiles
    Yoshihiko Maesono
    Spiridon Penev
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 167 - 189
  • [30] Confidence intervals for distributional positions
    Holm, Sture
    Larsson, Rolf
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (07) : 2645 - 2660