Investigation of a new similarity solution for the (2+1)-dimensional Schwarzian Korteweg-de Vries equation

被引:0
|
作者
Ali, Mohamed R. [1 ,2 ]
Mubaraki, Ali [3 ]
Sadat, R. [4 ]
Ma, Wen-Xiu [5 ,6 ,7 ,8 ]
机构
[1] Benha Natl Univ, Fac Engn, Obour Campus, Obour City, Egypt
[2] Benha Univ, Benha Fac Engn, Basic Engn Sci Dept, Banha, Egypt
[3] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
[4] Zagazig Univ, Fac Engn, Dept Phys & Engn Math, Zagazig, Egypt
[5] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[6] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[7] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[8] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Makeng Campus, ZA-2735 Mmabatho, South Africa
来源
关键词
Lie symmetries; invariant solutions; commutative product; (2+1)-dimensional Schwarzian Korteweg-de Vries equation;
D O I
10.1142/S0217984925500289
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study the (2+1)-dimensional Schwarzian Korteweg-de Vries equation (SKdV). The explored solutions describe new Lump soliton colliding with visible soliton, an interaction between multi-soliton waves with one soliton, multi peaks of waves moving in a curved path, two hyperbolic waves moving together without interaction and some of periodic waves. We examine the commutative product between multi unknown Lie infinitesimals for the (2+1)-dimensional (SKdV) equation, and this study result in some new Lie vectors. The commutative product generates a system of nonlinear ODEs which had been solved manually. Through two stages of Lie symmetry reduction, SKdV equation is reduced to non-solvable nonlinear ODEs using various combinations of optimal Lie vectors. Using the Riccati-Bernoulli sub-ODE and Integration methods, we investigate new analytical solutions for these ODEs. Back substituting for the original variables generates new solutions for SKdV. Some selected solutions are illustrated through three-dimensional plots.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Binary Bell polynomial manipulations on the integrability of a generalized (2+1)-dimensional Korteweg-de Vries equation
    Wang, Yunhu
    Chen, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) : 624 - 634
  • [42] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
    Hu, Heng-Chun
    Liu, Fei-Yan
    CHINESE PHYSICS B, 2020, 29 (04)
  • [43] Investigation of the harmonic composition of the periodic solution of the Korteweg-de Vries equation
    Zaiko, YN
    TECHNICAL PHYSICS LETTERS, 1999, 25 (02) : 126 - 127
  • [44] New lump interaction complexitons to the (2+1)-dimensional Korteweg-de Vries equation with electrostatic wave potential in plasmas
    Sulaiman, Tukur Abdulkadir
    Yusuf, Abdullahi
    Abdeljabbar, Alrazi
    Bayram, Mustafa
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2024, 9 (02) : 173 - 177
  • [45] A generalized auxiliary equation method and its application to (2+1)-dimensional Korteweg-de Vries equations
    Zhang, Sheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) : 1028 - 1038
  • [46] Investigation of the harmonic composition of the periodic solution of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 1999, 25 : 126 - 127
  • [47] Line solitons, lumps, and lump chains in the (2+1)-dimensional generalization of the Korteweg-de Vries equation
    Zhuang, Jian-Hong
    Chen, Xin
    Chu, Jingyi
    Liu, Yaqing
    RESULTS IN PHYSICS, 2023, 52
  • [48] Nonautonomous characteristics of lump solutions for a (2+1)-dimensional Korteweg-de Vries equation with variable coefficients
    Chen, Fei-Peng
    Chen, Wei-Qin
    Wang, Lei
    Ye, Zhen-Jun
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 33 - 39
  • [49] Darboux transformation and soliton solution for the (2+1)-dimensional complex modified Korteweg-de Vries equations
    Yesmakhanova, K.
    Shaikhova, G.
    Bekova, G.
    Myrzakulov, R.
    6TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES (IC-MSQUARE 2017), 2017, 936
  • [50] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313