Remarks on generalized Calabi-Gray manifolds

被引:0
作者
Fei, Teng [1 ]
机构
[1] Rutgers Univ Newark, 195 Univ Ave, Newark, NJ 07102 USA
关键词
Complex manifolds; non-Kahler manifolds; Calabi-Yau manifolds; Calabi-Gray manifolds; twistor spaces; canonical bundle; YAU MANIFOLDS; COMPLEX; CONSTRUCTION; PRODUCTS; METRICS; MODELS;
D O I
10.1142/S0129167X24420047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalized Calabi-Gray manifolds are non-K & auml;hler complex manifolds with very explicit geometry yet not being homogeneous. In this note, we demonstrate how generalized Calabi-Gray manifolds can be used to answer some questions in non-K & auml;hler geometry.
引用
收藏
页数:9
相关论文
共 21 条
[1]  
Arbarello E, 2011, GRUNDLEHR MATH WISS, V268, P1, DOI 10.1007/978-3-540-69392-5_1
[2]  
Calabi E., 1958, T AM MATH SOC, V87, P407
[3]   Landau-Ginzburg models for certain fiber products with curves [J].
Chen, Zhuo ;
Pantev, Tony ;
Sharpe, Eric .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 :204-211
[4]   HESSIAN OF THE NATURAL HERMITIAN FORM ON TWISTOR SPACES [J].
Deschamps, Guillaume ;
Le Du, Noel ;
Mourougane, Christophe .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2017, 145 (01) :1-27
[5]  
EASTWOOD MG, 1993, J DIFFER GEOM, V38, P653
[6]  
Fei T., 2020, P INT CONSORTIUM CHI, P261, DOI DOI 10.48550/ARXIV.1807.08737.1464
[7]   The Anomaly Flow over Riemann Surfaces [J].
Fei, Teng ;
Huang, Zhijie ;
Picard, Sebastien .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (03) :2134-2165
[8]   A CONSTRUCTION OF INFINITELY MANY SOLUTIONS TO THE STROMINGER SYSTEM [J].
Fei, Teng ;
Huang, Zhijie ;
Picard, Sebastien .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 117 (01) :23-39
[9]   Some torsional local models for heterotic strings [J].
Fei, Teng .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2017, 25 (05) :941-968