Magnetic heating of interacting nanoparticles under different driving field waveforms

被引:0
作者
Ortega-Julia, J. [1 ]
Ortega, D. [2 ,3 ]
Leliaert, J. [1 ,4 ]
机构
[1] Univ Ghent, Dept Solid State Sci, Ghent, Belgium
[2] IMDEA Nanosci, Faraday 9, Madrid 28049, Spain
[3] Condensed Matter Phys Dept, Fac Sci, Cadiz 11510, Spain
[4] Biomed Res & Innovat Inst Cadiz INiBICA, Cadiz, Spain
关键词
IRON-OXIDE NANOPARTICLES; HYPERTHERMIA; AGGREGATION; THERMOTHERAPY; FEASIBILITY; ABSORPTION;
D O I
10.1063/5.0197879
中图分类号
O59 [应用物理学];
学科分类号
摘要
This study explores the impact of different magnetic driving field waveforms on nanoparticle heating in magnetic hyperthermia. Our research, which shifts the usual focus from individual nanoparticle properties to interacting particle clusters, evidences that square waves induce more uniform and greater heating than sinusoidal waves. The sequential switching observed with sinusoidal waves, which additionally strongly depends on the alignment of the particle cluster with respect to the direction of the field, leads to less uniform heating within and among different clusters. In contrast, a square waveform leads to simultaneous particle switching, thereby homogenizing the heat and potentially mitigating hazardous hot spots. These findings reaffirm the potential advantages for magnetic hyperthermia treatments using non-harmonic field waveforms, offering more uniform heating and the possibility of reducing the applied field exposure.
引用
收藏
页数:6
相关论文
共 43 条
  • [31] Disentangling local heat contributions in interacting magnetic nanoparticles
    Munoz-Menendez, C.
    Serantes, D.
    Chubykalo-Fesenko, O.
    Ruta, S.
    Hovorka, O.
    Nieves, P.
    Livesey, K. L.
    Baldomir, D.
    Chantrell, R.
    [J]. PHYSICAL REVIEW B, 2020, 102 (21)
  • [32] The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects
    Munoz-Menendez, Cristina
    Conde-Leboran, Ivan
    Baldomir, Daniel
    Chubykalo-Fesenko, Oksana
    Serantes, David
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (41) : 27812 - 27820
  • [33] Estimating the heating of complex nanoparticle aggregates for magnetic hyperthermia
    Ortega-Julia, Javier
    Ortega, Daniel
    Leliaert, Jonathan
    [J]. NANOSCALE, 2023, 15 (24) : 10342 - 10350
  • [34] P. P. Alonso., Sphere vector visualizer 3D.
  • [35] Applications of magnetic nanoparticles in biomedicine
    Pankhurst, QA
    Connolly, J
    Jones, SK
    Dobson, J
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (13) : R167 - R181
  • [36] Physical aspects of magnetic hyperthermia: Low-frequency ac field absorption in a magnetic colloid
    Raikher, Yu. L.
    Stepanov, V. I.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 368 : 421 - 427
  • [37] Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles
    Ruta, S.
    Chantrell, R.
    Hovorka, O.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [38] Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia
    Soetaert, Frederik
    Dupre, Luc
    Ivkov, Robert
    Crevecoeur, Guillaume
    [J]. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2015, 60 (05): : 491 - 504
  • [39] Clinical use of the hyperthermia treatment planning system hyperplan to predict effectiveness and toxicity
    Sreenivasa, G
    Gellermann, J
    Rau, B
    Nadobny, J
    Schlag, P
    Deuflhard, P
    Felix, R
    Wust, P
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 55 (02): : 407 - 419
  • [40] Magnetic iron oxide nanoparticles for disease detection and therapy
    Tong, Sheng
    Zhu, Haibao
    Bao, Gang
    [J]. MATERIALS TODAY, 2019, 31 : 86 - 99