Magnetic heating of interacting nanoparticles under different driving field waveforms

被引:0
作者
Ortega-Julia, J. [1 ]
Ortega, D. [2 ,3 ]
Leliaert, J. [1 ,4 ]
机构
[1] Univ Ghent, Dept Solid State Sci, Ghent, Belgium
[2] IMDEA Nanosci, Faraday 9, Madrid 28049, Spain
[3] Condensed Matter Phys Dept, Fac Sci, Cadiz 11510, Spain
[4] Biomed Res & Innovat Inst Cadiz INiBICA, Cadiz, Spain
关键词
IRON-OXIDE NANOPARTICLES; HYPERTHERMIA; AGGREGATION; THERMOTHERAPY; FEASIBILITY; ABSORPTION;
D O I
10.1063/5.0197879
中图分类号
O59 [应用物理学];
学科分类号
摘要
This study explores the impact of different magnetic driving field waveforms on nanoparticle heating in magnetic hyperthermia. Our research, which shifts the usual focus from individual nanoparticle properties to interacting particle clusters, evidences that square waves induce more uniform and greater heating than sinusoidal waves. The sequential switching observed with sinusoidal waves, which additionally strongly depends on the alignment of the particle cluster with respect to the direction of the field, leads to less uniform heating within and among different clusters. In contrast, a square waveform leads to simultaneous particle switching, thereby homogenizing the heat and potentially mitigating hazardous hot spots. These findings reaffirm the potential advantages for magnetic hyperthermia treatments using non-harmonic field waveforms, offering more uniform heating and the possibility of reducing the applied field exposure.
引用
收藏
页数:6
相关论文
共 43 条
  • [1] Nonharmonic Driving Fields for Enhancement of Nanoparticle Heating Efficiency in Magnetic Hyperthermia
    Allia, Paolo
    Barrera, Gabriele
    Tiberto, Paola
    [J]. PHYSICAL REVIEW APPLIED, 2019, 12 (03)
  • [2] Tailoring defects and nanocrystal transformation for optimal heating power in bimagnetic CoyFe1-yO@CoxFe3-xO4 particles
    Antonaropoulos, George
    Vasilakaki, Marianna
    Trohidou, Kalliopi N.
    Iannotti, Vincenzo
    Ausanio, Giovanni
    Abeykoon, Milinda
    Bozin, Emil S.
    Lappas, Alexandros
    [J]. NANOSCALE, 2022, 14 (02) : 382 - 401
  • [3] Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms
    Barrera, Gabriele
    Allia, Paolo
    Tiberto, Paola
    [J]. NANOSCALE ADVANCES, 2020, 2 (10): : 4652 - 4664
  • [4] A TEM-based method as an alternative to the BET method for measuring off-line the specific surface area of nanoaerosols
    Bau, S.
    Witschger, O.
    Gensdarmes, F.
    Rastoix, O.
    Thomas, D.
    [J]. POWDER TECHNOLOGY, 2010, 200 (03) : 190 - 201
  • [5] Bohnert J, 2009, IFMBE PROC, V22, P2532
  • [6] THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE
    BROWN, WF
    [J]. PHYSICAL REVIEW, 1963, 130 (05): : 1677 - +
  • [7] ANALYSIS OF FRACTAL CLUSTER MORPHOLOGY PARAMETERS - STRUCTURAL COEFFICIENT AND DENSITY AUTOCORRELATION FUNCTION CUTOFF
    CAI, J
    LU, NL
    SORENSEN, CM
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1995, 171 (02) : 470 - 473
  • [8] Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
    Carrey, J.
    Mehdaoui, B.
    Respaud, M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [9] Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals
    Castellanos-Rubio, Idoia
    Rodrigo, Irati
    Munshi, Rahul
    Arriortua, Oihane
    Garitaonandia, Jose S.
    Martinez-Amesti, Ana
    Plazaola, Fernando
    Orue, Inaki
    Pralle, Arnd
    Insausti, Maite
    [J]. NANOSCALE, 2019, 11 (35) : 16635 - 16649
  • [10] Magnetic nanoparticles in theranostic applications
    Coene, A.
    Leliaert, J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 131 (16)