Quantitative Analysis of Trace Metal Ions in Aqueous Solutions Using Electrodeposition-Assisted Laser-Induced Breakdown Spectroscopy (EA-LIBS)

被引:0
作者
Kim, Hyeongbin [1 ]
Lee, Yunu [2 ]
Yang, Wonseok [3 ]
Foster, Richard I. [3 ]
Choi, Sungyeol [1 ,3 ,4 ]
机构
[1] Seoul Natl Univ, Dept Nucl Engn, 1 Gwanak ro, Seoul 08826, South Korea
[2] Samsung Elect, Device Solut, 114 Samsung ro, Pyeongtaek si 17786, South Korea
[3] Seoul Natl Univ, Nucl Res Inst Future Technol & Policy, 1 Gwanak Ro, Seoul 08826, South Korea
[4] Seoul Natl Univ, Inst Engn Res, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Laser-induced plasma spectroscopy; Electrochemical deposition; Limit of detection; Multi-element analysis; Partial least-squares regression; SENSITIVE DETECTION; WATER; ELEMENT;
D O I
10.1007/s11814-024-00291-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Laser-induced breakdown spectroscopy (LIBS) is a powerful elemental analysis technique capable of in-situ and real-time analysis, depending on its application. Therefore, it has the potential to quantify trace metal ion concentrations for chemical control in the harsh environments of nuclear power plants. However, to apply this technique, the limitations of conventional LIBS in liquid analysis must be addressed. In this study, we overcame these limitations using electrodeposition to perform phase conversion to a solid state and preconcentration. We derived calibration curves and determined the limits of detection for quantifying nickel (Ni) and iron (Fe) ion concentrations in aqueous solutions. The calibration curves showed high linearity with R2 values over 0.9, and the detection limits for both elements were improved to a low ppm range (Ni: 1.273 ppm, Fe: 1.412 ppm). Furthermore, partial least-squares regression was applied for multi-element analysis to enhance prediction accuracy, allowing simultaneous detection of Ni and Fe.
引用
收藏
页码:1197 / 1205
页数:9
相关论文
共 39 条
[1]   Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry [J].
Amador-Hernández, J ;
García-Ayuso, LE ;
Fernández-Romero, JM ;
de Castro, MDL .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2000, 15 (06) :587-593
[2]   Corrosion of Stainless Steel in Simulated Nuclear Reactor Primary Coolant-Experiments and Modeling [J].
Bojinov, Martin ;
Betova, Iva ;
Karastoyanov, Vasil ;
Avdeev, Georgi .
MATERIALS, 2024, 17 (05)
[3]   Sensitive detection of metals in water using laser-induced breakdown spectroscopy on wood sample substrates [J].
Chen, Zhijiang ;
Godwal, Yogesh ;
Tsui, Ying Yin ;
Fedosejevs, Robert .
APPLIED OPTICS, 2010, 49 (13) :C87-C94
[4]   Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques [J].
Clegg, Samuel M. ;
Sklute, Elizabeth ;
Dyar, M. Darby ;
Barefield, James E. ;
Wiens, Roger C. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2009, 64 (01) :79-88
[5]  
Cremers D.A., 2013, HDB LASER INDUCED BR, V2nd, DOI DOI 10.1002/9781118567371
[6]   Analysis of heavy metals in liquids using Laser Induced Breakdown Spectroscopy by liquid-to-solid matrix conversion [J].
Diaz Pace, D. M. ;
D'Angelo, C. A. ;
Bertuccelli, D. ;
Bertuccelli, G. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2006, 61 (08) :929-933
[7]   Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy [J].
Fichet, P ;
Mauchien, P ;
Wagner, JF ;
Moulin, C .
ANALYTICA CHIMICA ACTA, 2001, 429 (02) :269-278
[8]   Laser-Induced Breakdown Spectroscopy [J].
Fortes, Francisco J. ;
Moros, Javier ;
Lucena, Patricia ;
Cabalin, Luisa M. ;
Javier Laserna, J. .
ANALYTICAL CHEMISTRY, 2013, 85 (02) :640-669
[9]  
Gamburg YD, 2011, THEORY AND PRACTICE OF METAL ELECTRODEPOSITION, P335, DOI 10.1007/978-1-4419-9669-5_15
[10]   Comparison of AMS, TIMS, and SIMS techniques for determining uranium isotope ratios in individual particles [J].
Gao, Jie ;
He, Ming ;
Shen, Yan ;
Xu, Chang-Kun ;
Zhao, Yong-Gang .
JOURNAL OF MASS SPECTROMETRY, 2023, 58 (02)