Finite-Time Disturbance Observer-Based Adaptive Course Control for Surface Ships

被引:0
|
作者
Xu, Ming [1 ,2 ]
Gong, Chenglong [1 ]
机构
[1] Wuhan Univ Technol, Sch Automat, Wuhan 430070, Peoples R China
[2] Fujian Polytech Water Conservancy & Elect Power, Sch Informat Engn, Yongan 366000, Peoples R China
关键词
course tracking; input saturation; disturbance observer; hyperbolic tangent; LaSalle's Invariance Principle; INPUT; STABILIZATION; DESIGN;
D O I
10.3390/s24154843
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, a finite-time disturbance observer-based adaptive control strategy is proposed for the ship course control system subject to input saturation and external disturbances. Based on the Gaussian error function, a smooth saturation model is designed to avoid the input saturation of the system and reduce steering engine vibrations, and an auxiliary dynamic system is introduced to compensate for the effect of the rudder angle input inconsistency on the system. By constructing an auxiliary dynamic, a finite-time disturbance observer is designed to approximate the external disturbance of the system; an adaptive updating law is also constructed to estimate the upper bound of the derivative of the external disturbance. Combining the finite-time disturbance observer with the auxiliary dynamic system, a novel adaptive ship course control law is proposed by using the hyperbolic tangent function. Moreover, according to LaSalle's Invariance Principle, a system stability analysis method with loose stability conditions and easy realizations is designed, while the stability of the closed-loop system and the ultimately uniformly boundedness of all its signals are proven. Finally, the course control simulation analysis of a surface ship is carried out. The results show that the proposed control law has a strong resistance to external disturbances and a strong non-fragility to system parameter perturbations, which ensure that the course control system has great control performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Disturbance Observer-Based Finite-Time Control for a Quadrotor Aircraft
    Du, Haibo
    Liu, Kunbin
    Wu, Di
    Zhu, Wenwu
    Ding, Shihong
    2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 1248 - 1253
  • [2] Adaptive disturbance observer-based finite-time command filtered control of nonlinear systems
    Bai, Yanchun
    Yao, Jianyong
    Hu, Jian
    Feng, Guangbin
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (14):
  • [3] Disturbance Observer-Based Adaptive Finite-Time Attitude Tracking Control for Rigid Spacecraft
    Zhang, Jinhui
    Zhao, Weishuang
    Shen, Ganghui
    Xia, Yuanqing
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (11): : 6606 - 6613
  • [4] Finite-Time Disturbance Observer-Based Adaptive Continuous Robust Control for Buck Converter
    Aghdam, Mohammadreza Hassanzadeh
    Mazare, Mahmood
    Torkaman, Hossein
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2024,
  • [5] Disturbance Observer-Based Finite-Time Braking Control of Vehicular Platoons
    Guo, Ge
    Zhang, Xinxin
    Liu, Yan-Xi
    Zhao, Ziwei
    Zhang, Renyongkang
    Zhang, Chen-Liang
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 492 - 500
  • [6] Disturbance observer-based finite-time control for a class of systems with multiple heterogeneous disturbances
    Zhang, Huifeng
    Wei, Xinjiang
    Zhao, Hanxu
    Hu, Xin
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (01) : 27 - 36
  • [7] Disturbance and state observer-based adaptive finite-time control for quantized nonlinear systems with unknown control directions
    Meng, Bo
    Liu, Wenhui
    Qi, Xiaojing
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (07): : 2906 - 2931
  • [8] Disturbance Observer-Based Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems With Finite-Time Prescribed Performance
    Qiu, Jianbin
    Wang, Tong
    Sun, Kangkang
    Rudas, Imre J.
    Gao, Huijun
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (04) : 1175 - 1184
  • [9] Finite-time disturbance observer-based trajectory tracking control for flexible-joint robots
    Wang, Huiming
    Zhang, Yang
    Zhao, Zhenhua
    Tang, Xianlun
    Yang, Jun
    Chen, I-Ming
    NONLINEAR DYNAMICS, 2021, 106 (01) : 459 - 471
  • [10] Disturbance Observer-Based Finite-Time Speed Control for Marine Diesel Engine With Input Constraints
    Li, Xuemin
    Liu, Yufei
    Zhang, Jian
    Wang, Runzhi
    IEEE ACCESS, 2020, 8 : 50859 - 50871