Experimental and computational aspects of molecular frustrated Lewis pairs for CO2 hydrogenation: en route for heterogeneous systems?

被引:5
作者
Riddhi, Riddhi Kumari [1 ]
Penas-Hidalgo, Francesc [2 ]
Chen, Hongmei [2 ]
Quadrelli, Elsje Alessandra [1 ]
Canivet, Jerome [1 ]
Mellot-Draznieks, Caroline [2 ]
Sole-Daura, Albert [3 ,4 ]
机构
[1] Univ LYON 1, IRCELYON, UMR 5256, 2 Ave Albert Einstein, F-69626 Villeurbanne, France
[2] PSL Res Univ, Sorbonne Univ, Coll France, Lab Chim Proc Biol,CNRS,UMR 8229, F-75231 Paris 05, France
[3] Univ Rovira i Virgili, Dept Quim Fis & Inorgan, C Marcelli Domingo 1, Tarragona 43007, Spain
[4] Barcelona Inst Sci & Technol, Inst Chem Res Catalonia ICIQ CERCA, Avgda Paisos Catalans 16, Tarragona 43007, Spain
关键词
METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE; H-2; ACTIVATION; CATALYTIC-HYDROGENATION; HETEROLYTIC ACTIVATION; DIHYDROGEN ACTIVATION; REDUCTION; MECHANISM; ACID; CLEAVAGE;
D O I
10.1039/d3cs00267e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Catalysis plays a crucial role in advancing sustainability. The unique reactivity of frustrated Lewis pairs (FLPs) is driving an ever-growing interest in the transition metal-free transformation of small molecules like CO2 into valuable products. In this area, there is a recent growing incentive to heterogenize molecular FLPs into porous solids, merging the benefits of homogeneous and heterogeneous catalysis - high activity, selectivity, and recyclability. Despite the progress, challenges remain in preventing deactivation, poisoning, and simplifying catalyst-product separation. This review explores the expanding field of FLPs in catalysis, covering existing molecular FLPs for CO2 hydrogenation and recent efforts to design heterogeneous porous systems from both experimental and theoretical perspectives. Section 2 discusses experimental examples of CO2 hydrogenation by molecular FLPs, starting with stoichiometric reactions and advancing to catalytic ones. It then examines attempts to immobilize FLPs in porous matrices, including siliceous solids, metal-organic frameworks (MOFs), covalent organic frameworks, and disordered polymers, highlighting current limitations and challenges. Section 3 then reviews computational studies on the mechanistic details of CO2 hydrogenation, focusing on H-2 splitting and hydride/proton transfer steps, summarizing efforts to establish structure-activity relationships. It also covers the computational aspects on grafting FLPs inside MOFs. Finally, Section 4 summarizes the main design principles established so far, while addressing the complexities of translating computational approaches into the experimental realm, particularly in heterogeneous systems. This section underscores the need to strengthen the dialogue between theoretical and experimental approaches in this field.
引用
收藏
页码:9874 / 9903
页数:30
相关论文
共 161 条
[1]   Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment [J].
Artz, Jens ;
Mueller, Thomas E. ;
Thenert, Katharina ;
Kleinekorte, Johanna ;
Meys, Raoul ;
Sternberg, Andre ;
Bardow, Andre ;
Leitner, Walter .
CHEMICAL REVIEWS, 2018, 118 (02) :434-504
[2]   Non-Metal-Mediated Homogeneous Hydrogenation of CO2 to CH3OH [J].
Ashley, Andrew E. ;
Thompson, Amber L. ;
O'Hare, Dermot .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (52) :9839-9843
[3]   Unveiling the mechanism of the photocatalytic reduction of CO2 to formate promoted by porphyrinic Zr-based metal-organic frameworks [J].
Benseghir, Youven ;
Sole-Daura, Albert ;
Cairnie, Daniel R. ;
Robinson, Amanda L. ;
Duguet, Mathis ;
Mialane, Pierre ;
Gairola, Priyanka ;
Gomez-Mingot, Maria ;
Fontecave, Marc ;
Iovan, Diana ;
Bonnett, Brittany ;
Morris, Amanda J. ;
Dolbecq, Anne ;
Mellot-Draznieks, Caroline .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (35) :18103-18115
[4]   A Hafnium-Based Metal Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO2 Fixation and Regioselective and Enantioretentive Epoxide Activation [J].
Beyzavi, M. Hassan ;
Klet, Rachel C. ;
Tussupbayev, Samat ;
Borycz, Joshua ;
Vermeulen, Nicolaas A. ;
Cramer, Christopher J. ;
Stoddart, J. Fraser ;
Hupp, Joseph T. ;
Farha, Omar K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (45) :15861-15864
[5]   Heterolytic activation of hydrogen using frustrated Lewis pairs containing tris(2,2′,2"-perfluorobiphenyl)borane [J].
Binding, Samantha C. ;
Zaher, Hasna ;
Chadwick, F. Mark ;
O'Hare, Dermot .
DALTON TRANSACTIONS, 2012, 41 (30) :9061-9066
[6]   Acid and basic catalysis [J].
Bronsted, JN .
CHEMICAL REVIEWS, 1928, 5 (03) :231-338
[7]   Kinetic model of ethyl benzene oxidation catalysed by manganese salts [J].
Bukharkina, TV ;
Grechishkina, OS ;
Digurov, NG ;
Krukovskaya, NV .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2003, 7 (02) :148-154
[8]   From desktop to benchtop with automated computational workflows for computer-aided design in asymmetric catalysis [J].
Burai Patrascu, Mihai ;
Pottel, Joshua ;
Pinus, Sharon ;
Bezanson, Michelle ;
Norrby, Per-Ola ;
Moitessier, Nicolas .
NATURE CATALYSIS, 2020, 3 (07) :574-584
[9]   Analysis of the Activation and Heterolytic Dissociation of H2 by Frustrated Lewis Pairs: NH3/BX3 (X = H, F, and Cl) [J].
Camaioni, Donald M. ;
Ginovska-Pangovska, Bojana ;
Schenter, Gregory K. ;
Kathmann, Shawn M. ;
Autrey, Tom .
JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (26) :7228-7237
[10]   Metal-Organic Framework Catalysts for Solar Fuels: Light-Driven Conversion of Carbon Dioxide into Formic Acid [J].
Canivet, Jerome ;
Wisser, Florian M. .
ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) :9027-9043