Wide-responsive-range multicolor temperature-dependent photoluminescence of LiYW2O8/LiYW2O8:Eu3+ phosphors for anti-counterfeiting

被引:2
作者
Wang, Shanwen [1 ]
Wang, Wenxiang [1 ]
Zhang, Jiachi [1 ]
机构
[1] Lanzhou Univ, Natl & Local Joint Engn Lab Opt Convers Mat & Tech, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Temperature-dependent photoluminescence; Phosphor; Anti-counterfeiting; LiYW2O8:Eu3+; THERMAL-STABILITY; LUMINESCENCE; EARTH; EMISSION; BEHAVIOR; STATES; EU3+; BAND; RE;
D O I
10.1016/j.jlumin.2024.120811
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Temperature-dependent photoluminescence (PL) strongly depends on temperature and can be applied for non-contact PL anti-counterfeiting. However, it still needs a temperature-dependent PL phosphor with significant PL color changes over a wide range around room temperature. In this work, the LiYW2O8/LiYW2O8:Eu3+ phosphors are presented. The PL of the phosphors consists of a broadband host emission and narrow Eu3+ emissions, which show significantly different temperature dependences over a large range (room temperature +/- 160 degrees C). It indicates that as the temperature increases from -140 degrees C to 180 degrees C, the PL color of the LiYW2O8 changes from green to blue and that of the LiYW2O8:Eu3+ changes from green-blue to red. Based on the unique multicolor temperature-dependent PL, a PL anti-counterfeiting logo is designed based on the LiYW2O8/LiYW2O8:Eu3+ phosphors and polydimethylsiloxane (PDMS) polymer. The results show that the PL color of the logo significantly changes with temperature, and therefore the LiYW2O8/LiYW2O8:Eu3+ phosphors are promising for designing PL anti-counterfeiting.
引用
收藏
页数:6
相关论文
共 53 条
[1]   From colour fingerprinting to the control of photoluminescence in elastic photonic crystals [J].
Arsenault, AC ;
Clark, TJ ;
Von Freymann, G ;
Cademartiri, L ;
Sapienza, R ;
Bertolotti, J ;
Vekris, E ;
Wong, S ;
Kitaev, V ;
Manners, I ;
Wang, RZ ;
John, S ;
Wiersma, D ;
Ozin, GA .
NATURE MATERIALS, 2006, 5 (03) :179-184
[2]   Experimental study of the electronic density of states in aluminium-based intermetallics [J].
Belin-Ferré, E ;
Klanjsek, M ;
Jaglicic, Z ;
Dolinsek, J ;
Dubois, JM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (43) :6911-6924
[3]   Learning the electronic density of states in condensed matter [J].
Ben Mahmoud, Chiheb ;
Anelli, Andrea ;
Csanyi, Gabor ;
Ceriotti, Michele .
PHYSICAL REVIEW B, 2020, 102 (23)
[4]   Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials [J].
Cai, Dengke ;
Neyer, Andreas ;
Kuckuk, Ruediger ;
Heise, H. Michael .
JOURNAL OF MOLECULAR STRUCTURE, 2010, 976 (1-3) :274-281
[5]   Enhanced luminescence of Mn4+:Y3Al5O12 red phosphor via impurity doping [J].
Chen, Daqin ;
Zhou, Yang ;
Xu, Wei ;
Zhong, Jiasong ;
Ji, Zhenguo ;
Xiang, Weidong .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (08) :1704-1712
[6]   Optical temperature sensing behavior of Er3+/Yb3+/Tm3+:Y2O3 nanoparticles based on thermally and non-thermally coupled levels [J].
Chen, Guangrun ;
Lei, Ruoshan ;
Huang, Feifei ;
Wang, Huanping ;
Zhao, Shilong ;
Xu, Shiqing .
OPTICS COMMUNICATIONS, 2018, 407 :57-62
[7]   An abnormal yellow emission and temperature-sensitive properties for perovskite-type Ca2MgWO6 phosphor via cation substitution and energy transfer [J].
Cui, Min ;
Wang, Jindi ;
Liu, Jinhua ;
Huang, Shuai ;
Shang, Mengmeng .
JOURNAL OF LUMINESCENCE, 2019, 214
[8]   Temperature-Dependent Photoluminescence of g-C3N4: Implication for Temperature Sensing [J].
Das, Debanjan ;
Shinde, S. L. ;
Nanda, K. K. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) :2181-2186
[9]  
DEMAS JN, 1970, J AM CHEM SOC, V92, P7262
[10]   Cs4PbBr6@PDMS film prepared by a facile two-step method for wide color gamut backlit display [J].
Ding, Jing ;
Zhou, Yufeng ;
He, Ziyao ;
He, Qingyun ;
Liang, Xiaojuan ;
Xia, Wei ;
Xiang, Weidong .
APPLIED SURFACE SCIENCE, 2022, 596