Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE

被引:0
作者
Gu, Xinyu [1 ,2 ]
Aranganathan, Akashnathan [1 ,3 ]
Tiwary, Pratyush [1 ,2 ,4 ]
机构
[1] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Hlth Comp, Bethesda, MD 20742 USA
[3] Univ Maryland, Biophys Program, College Pk, MD USA
[4] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
来源
ELIFE | 2024年 / 13卷
基金
美国国家卫生研究院;
关键词
artificial intelligence; molecular simulation; AlphaFold; docking; enhanced sampling; Human; ACCURATE DOCKING; GLIDE;
D O I
10.7554/eLife.99702; 10.7554/eLife.99702.3.sa1; 10.7554/eLife.99702.3.sa2; 10.7554/eLife.99702.3.sa3; 10.7554/eLife.99702.3.sa4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2's strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.
引用
收藏
页数:18
相关论文
共 58 条
[1]   Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J].
Abramson, Josh ;
Adler, Jonas ;
Dunger, Jack ;
Evans, Richard ;
Green, Tim ;
Pritzel, Alexander ;
Ronneberger, Olaf ;
Willmore, Lindsay ;
Ballard, Andrew J. ;
Bambrick, Joshua ;
Bodenstein, Sebastian W. ;
Evans, David A. ;
Hung, Chia-Chun ;
O'Neill, Michael ;
Reiman, David ;
Tunyasuvunakool, Kathryn ;
Wu, Zachary ;
Zemgulyte, Akvile ;
Arvaniti, Eirini ;
Beattie, Charles ;
Bertolli, Ottavia ;
Bridgland, Alex ;
Cherepanov, Alexey ;
Congreve, Miles ;
Cowen-Rivers, Alexander I. ;
Cowie, Andrew ;
Figurnov, Michael ;
Fuchs, Fabian B. ;
Gladman, Hannah ;
Jain, Rishub ;
Khan, Yousuf A. ;
Low, Caroline M. R. ;
Perlin, Kuba ;
Potapenko, Anna ;
Savy, Pascal ;
Singh, Sukhdeep ;
Stecula, Adrian ;
Thillaisundaram, Ashok ;
Tong, Catherine ;
Yakneen, Sergei ;
Zhong, Ellen D. ;
Zielinski, Michal ;
Zidek, Augustin ;
Bapst, Victor ;
Kohli, Pushmeet ;
Jaderberg, Max ;
Hassabis, Demis ;
Jumper, John M. .
NATURE, 2024, 630 (8016) :493-500
[2]   Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures [J].
Al-Masri, Carmen ;
Trozzi, Francesco ;
Lin, Shu-Hang ;
Tran, Oanh ;
Sahni, Navriti ;
Patek, Marcel ;
Cichonska, Anna ;
Ravikumar, Balaguru ;
Rahman, Rayees .
BIOINFORMATICS ADVANCES, 2023, 3 (01)
[3]   Will the Real Cryptic Pocket Please Stand Out? [J].
Amaro, Rommie E. .
BIOPHYSICAL JOURNAL, 2019, 116 (05) :753-754
[4]   Are Deep Learning Structural Models Sufficiently Accurate for Free- Energy Calculations? Application of FEP plus to AlphaFold2-Predicted Structures [J].
Beuming, Thijs ;
Martin, Helena ;
Diaz-Rovira, Anna M. ;
Diaz, Lucia ;
Guallar, Victor ;
Ray, Soumya S. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, :4351-4360
[5]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[6]  
Chakravarty D, 2023, bioRxiv, DOI [10.1101/2023.11.21.567977, 10.1101/2023.11.21.567977, DOI 10.1101/2023.11.21.567977]
[7]  
Corso G, 2023, Arxiv, DOI [arXiv:2210.01776, 10.48550/arXiv.2210.01776]
[8]   Using AlphaFold and Experimental Structures for the Prediction of the Structure and Binding Affinities of GPCR Complexes via Induced Fit Docking and Free Energy Perturbation [J].
Coskun, Dilek ;
Lihan, Muyun ;
Rodrigues, Joao P. G. L. M. ;
Vass, Marton ;
Robinson, Daniel ;
Friesner, Richard A. ;
Miller, Edward B. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 20 (01) :477-489
[9]  
da Silva GM, 2024, NAT COMMUN, V15, DOI 10.1038/s41467-024-46715-9
[10]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092