Strigolactones: A promising tool for nutrient acquisition through arbuscular mycorrhizal fungi symbiosis and abiotic stress tolerance

被引:6
作者
Naseer, Muhammad Asad [1 ]
Zhang, Zhi Qin [1 ]
Mukhtar, Ahmed [2 ]
Asad, Muhammad Shoaib [2 ]
Wu, Hai Yan [1 ]
Yang, Hong [1 ]
Zhou, Xun Bo [1 ]
机构
[1] Guangxi Univ, Coll Agr, Guangxi Key Lab Agr Environm & Agr Prod Safety, Nanning 530004, Peoples R China
[2] Northwest A&F Univ, Coll Agron, Yangling 712100, Peoples R China
基金
中国博士后科学基金;
关键词
Strigolactones; Rhizosphere signaling; Arbuscular mycorrhizal fungi; Nutrient acquisition; SIGNALING MOLECULES; AUXIN TRANSPORT; GENE-EXPRESSION; ROOT-FORMATION; BUD OUTGROWTH; PLANT; GERMINATION; INHIBITION; ARABIDOPSIS; RESPONSES;
D O I
10.1016/j.plaphy.2024.109057
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Strigolactones (SLs) constitute essential phytohormones that control pathogen defense, resilience to phosphate deficiency and abiotic stresses. Furthermore, SLs are released into the soil by roots, especially in conditions in which there is inadequate phosphate or nitrogen available. SLs have the aptitude to stimulate the root parasite plants and symbiotic cooperation with arbuscular mycorrhizal (AM) fungi in rhizosphere. The use of mineral resources, especially phosphorus (P), by host plants is accelerated by AMF, which also improves plant growth and resilience to a series of biotic and abiotic stresses. Thus, these SL treatments that promote rhizobial symbiosis are substitutes for artificial fertilizers and other chemicals, supporting ecologically friendly farming practices. Moreover, SLs have become a fascinating target for abiotic stress adaptation in plants, with an array of uses in sustainable agriculture. In this review, the biological activity has been summarized that SLs as a signaling hormone for AMF symbiosis, nutrient acquisition, and abiotic stress tolerance through interaction with other hormones. Furthermore, the processes behind the alterations in the microbial population caused by SL are clarified, emphasizing the interplay with other signaling mechanisms. This review covers the latest developments in SL studies as well as the properties of SLs on microbial populations, plant hormone transductions, interactions and abiotic stress tolerance.
引用
收藏
页数:13
相关论文
共 148 条
[1]   Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro [J].
Abe, Satoko ;
Sado, Aika ;
Tanaka, Kai ;
Kisugi, Takaya ;
Asami, Kei ;
Ota, Saeko ;
Kim, Hyun Il ;
Yoneyama, Kaori ;
Xie, Xiaonan ;
Ohnishi, Toshiyuki ;
Seto, Yoshiya ;
Yamaguchi, Shinjiro ;
Akiyama, Kohki ;
Yoneyama, Koichi ;
Nomura, Takahito .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (50) :18084-18089
[2]   Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants [J].
Agusti, Javier ;
Herold, Silvia ;
Schwarz, Martina ;
Sanchez, Pablo ;
Ljung, Karin ;
Dun, Elizabeth A. ;
Brewer, Philip B. ;
Beveridge, Christine A. ;
Sieberer, Tobias ;
Sehr, Eva M. ;
Greb, Thomas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (50) :20242-20247
[3]   Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence [J].
Akhter, Muhammad Salim ;
Noreen, Sibgha ;
Mahmood, Seema ;
Athar, Habib-ur-Rehman ;
Ashraf, Muhammad ;
Alsahli, Abdulaziz Abdullah ;
Ahmad, Parvaiz .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (01)
[4]   Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi [J].
Akiyama, K ;
Matsuzaki, K ;
Hayashi, H .
NATURE, 2005, 435 (7043) :824-827
[5]   Strigolactones, a Novel Carotenoid-Derived Plant Hormone [J].
Al-Babili, Salim ;
Bouwmeester, Harro J. .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 66, 2015, 66 :161-186
[6]   The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone [J].
Alder, Adrian ;
Jamil, Muhammad ;
Marzorati, Mattia ;
Bruno, Mark ;
Vermathen, Martina ;
Bigler, Peter ;
Ghisla, Sandro ;
Bouwmeester, Harro ;
Beyer, Peter ;
Al-Babili, Salim .
SCIENCE, 2012, 335 (6074) :1348-1351
[7]   Strigolactone: An Emerging Growth Regulator for Developing Resilience in Plants [J].
Alvi, Ameena Fatima ;
Sehar, Zebus ;
Fatma, Mehar ;
Masood, Asim ;
Khan, Nafees A. .
PLANTS-BASEL, 2022, 11 (19)
[8]   Spatial Relationship between Irrigation Water Salinity, Waterlogging, and Cropland Degradation in the Arid and Semi-Arid Environments [J].
Amer, Reda .
REMOTE SENSING, 2021, 13 (06)
[9]   Potential of Karrikins as Novel Plant Growth Regulators in Agriculture [J].
Antala, Michal ;
Sytar, Oksana ;
Rastogi, Anshu ;
Brestic, Marian .
PLANTS-BASEL, 2020, 9 (01)
[10]   Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants [J].
Aroca, Ricardo ;
Manuel Ruiz-Lozano, Juan ;
Maria Zamarreno, Angel ;
Antonio Paz, Jose ;
Maria Garcia-Mina, Jose ;
Jose Pozo, Maria ;
Antonio Lopez-Raez, Juan .
JOURNAL OF PLANT PHYSIOLOGY, 2013, 170 (01) :47-55