Estimation of the Attraction Domain for the Quantum Systems Based on the Schrödinger Equation

被引:0
作者
Yang, Hongli [1 ,2 ]
Yu, Guohui [2 ]
Ivanov, Ivan Ganchev [3 ]
机构
[1] Qingdao Huanghai Univ, Coll Big Data, Qingdao 266427, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[3] St Kl Ohridski Sofia Univ, Fac Econ & Business Adm, Sofia 1113, Bulgaria
关键词
Schr & ouml; dinger equation; nonlinear systems; Hermitian operator; attraction domain; optimization; LYAPUNOV CONTROL; STABILIZATION; REGION;
D O I
10.3390/axioms13080542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a quantum system described by the Schr & ouml;dinger equation, utilizing the concept of the quantum Lyapunov function. The Lyapunov function is chosen based on the mean value of a virtual mechanical quantity, where different values of P, the mean value of the virtual mechanical quantity in the Lyapunov function, have an impact on the attractive domain of the quantum system. The selected primary optimization algorithms approximating matrix P are the particle swarm optimization (PSO) algorithm and the simulated annealing (SA) algorithm. This study examines the characteristics of the system's attraction domain under these two distinct algorithms and establishes stability conditions for the nonlinear quantum system. We introduce a method to estimate the size of the attractive domain using the Lyapunov function approach, converting the attractive domain issue into an optimization challenge. Numerical simulations are conducted in various two-dimensional test systems and spin 1/2 particle systems.
引用
收藏
页数:14
相关论文
共 30 条
[1]  
[Anonymous], 1965, MATH COMPUT, V19, P349
[2]   Region of Attraction Estimation for DC Microgrids With Constant Power Loads Using Potential Theory [J].
Chang, Fangyuan ;
Cui, Xiaofan ;
Wang, Mengqi ;
Su, Wencong .
IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (05) :3793-3808
[3]  
Chiang H.-D., 1988, 1988 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.88CH2458-8), P2453, DOI 10.1109/ISCAS.1988.15439
[4]   Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling [J].
Coron, Jean-Michel ;
Grigoriu, Andreea ;
Lefter, Catalin ;
Turinici, Gabriel .
NEW JOURNAL OF PHYSICS, 2009, 11
[5]   COMPUTATIONAL METHOD FOR DETERMINING QUADRATIC LYAPUNOV FUNCTIONS FOR NON-LINEAR SYSTEMS [J].
DAVISON, EJ ;
KURAK, EM .
AUTOMATICA, 1971, 7 (05) :627-+
[6]  
Hahn W., 1967, STABILITY MOTION, DOI 10.1007/978-3-642-50085-5
[7]   Enhancing topological information of the Lyapunov-based distributed model predictive control design for large-scale nonlinear systems [J].
He, Wenke ;
Li, Shaoyuan .
ASIAN JOURNAL OF CONTROL, 2023, 25 (02) :1476-1487
[8]  
Hong Y., 2005, ANAL CONTROL NONLINE
[9]   ON STABILIZATION OF NONLINEAR-SYSTEMS WITH ENLARGED DOMAIN OF ATTRACTION [J].
ICHIKAWA, K ;
ORTEGA, R .
AUTOMATICA, 1992, 28 (03) :623-626
[10]  
Jin D.Q., 2018, Sci. Technol. Vis, V6, P187