Small sample gearbox fault diagnosis based on improved deep forest in noisy environments

被引:4
|
作者
Shao, Haidong [1 ]
Ming, Yuhang [1 ]
Liu, Yiyu [2 ]
Liu, Bin [3 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, Changsha, Peoples R China
[2] Hunan Univ, Coll Design & Arts, Changsha, Peoples R China
[3] Univ Strathclyde, Dept Management Sci, Glasgow, Scotland
基金
中国国家自然科学基金;
关键词
Fault diagnosis; sgic-Forest; stacking multi-grained scanning; important feature selection cascade forest;
D O I
10.1080/10589759.2024.2404489
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Deep forest methods have gradually emerged as a well-liked substitute for conventional deep neural networks in diagnosing faults in mechanical systems. However, in practical industrial applications, limited training data and severe noise interference pose significant challenges to these models. Existing deep forest models have limitations in information extraction, making it difficult to handle the complexities of industrial environments. To better meet the practical needs of industrial applications, this paper proposes an improved deep forest model - sgic-Forest, specifically designed for fault diagnosis of small sample gearboxes in noisy environments. First, we developed a stacked multi-grained scanning module, which enhances the diversity of feature extraction by integrating the advantages of multiple base learners, thereby better addressing the complexities of industrial data. Secondly, we introduced an important feature selection module, which effectively filters out irrelevant information, significantly improving the model's robustness in high-noise environments. Experiments on two gearbox datasets show that the proposed method outperforms the basic deep forest model and mainstream deep learning methods in terms of diagnostic accuracy under small sample and noisy conditions.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Fault diagnosis of small sample bearings based on fuzzy clustering and improved Densenet network
    Wei W.
    Zhang X.
    Yang L.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2024, 56 (03): : 154 - 163
  • [22] Bearing fault diagnosis method based on improved Siamese neural network with small sample
    Zhao, Xiaoping
    Ma, Mengyao
    Shao, Fan
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [23] Fault Diagnosis for Planetary Gearbox Based on EMD and Deep Convolutional Neural Networks
    Hu N.
    Chen H.
    Cheng Z.
    Zhang L.
    Zhang Y.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (07): : 9 - 18
  • [24] Vibration-based gearbox fault diagnosis using deep neural networks
    Chen, Zhiqiang
    Chen, Xudong
    Li, Chuan
    Sanchez, Rene-Vinicio
    Qin, Huafeng
    JOURNAL OF VIBROENGINEERING, 2017, 19 (04) : 2475 - 2496
  • [25] Deep learning-based fault diagnosis of planetary gearbox: A systematic review
    Ahmad, Hassaan
    Cheng, Wei
    Xing, Ji
    Wang, Wentao
    Du, Shuhong
    Li, Linying
    Zhang, Rongyong
    Chen, Xuefeng
    Lu, Jinqi
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 77 : 730 - 745
  • [26] Research on Gearbox Fault Detection and Diagnosis Based on Improved Spectral Kurtosis Algorithm
    Cao, Lijun
    Zhao, Yanqin
    Yu, Guibo
    Chen, Shuxiao
    Su, Xujun
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND AUTOMATION ENGINEERING (MCAE), 2016, 58 : 174 - 177
  • [27] An improved prototype network method for small sample bearing fault diagnosis
    Zhao Z.
    Zhang R.
    Liu K.
    Yang S.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (20): : 214 - 221
  • [28] BIT-Based Intermittent Fault Diagnosis of Analog Circuits by Improved Deep Forest Classifier
    Huang, Congzhi
    Shen, Zhendong
    Zhang, Jianhua
    Hou, Guolian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [29] Fault diagnosis of control valves based on small-sample hybrid physics improved Resnet
    Wang, Xiaolin
    Li, Hongkun
    Cheng, Zhihua
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [30] FAULT DIAGNOSIS OF GEARBOX BASED ON MATCHING PURSUIT
    Feng, Zhi-Peng
    Zhang, Jin
    Hao, Ru-Jiang
    Zuo, Ming J.
    Chu, Fu-Lei
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 405 - 408