Small sample gearbox fault diagnosis based on improved deep forest in noisy environments

被引:4
|
作者
Shao, Haidong [1 ]
Ming, Yuhang [1 ]
Liu, Yiyu [2 ]
Liu, Bin [3 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, Changsha, Peoples R China
[2] Hunan Univ, Coll Design & Arts, Changsha, Peoples R China
[3] Univ Strathclyde, Dept Management Sci, Glasgow, Scotland
基金
中国国家自然科学基金;
关键词
Fault diagnosis; sgic-Forest; stacking multi-grained scanning; important feature selection cascade forest;
D O I
10.1080/10589759.2024.2404489
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Deep forest methods have gradually emerged as a well-liked substitute for conventional deep neural networks in diagnosing faults in mechanical systems. However, in practical industrial applications, limited training data and severe noise interference pose significant challenges to these models. Existing deep forest models have limitations in information extraction, making it difficult to handle the complexities of industrial environments. To better meet the practical needs of industrial applications, this paper proposes an improved deep forest model - sgic-Forest, specifically designed for fault diagnosis of small sample gearboxes in noisy environments. First, we developed a stacked multi-grained scanning module, which enhances the diversity of feature extraction by integrating the advantages of multiple base learners, thereby better addressing the complexities of industrial data. Secondly, we introduced an important feature selection module, which effectively filters out irrelevant information, significantly improving the model's robustness in high-noise environments. Experiments on two gearbox datasets show that the proposed method outperforms the basic deep forest model and mainstream deep learning methods in terms of diagnostic accuracy under small sample and noisy conditions.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Fault diagnosis technology of a planetary gearbox based on an improved deep forest algorithm under extreme conditions
    Li D.
    Jiang H.
    Zhao Y.
    Xu P.
    Qian R.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (11): : 39 - 50
  • [2] Fault Diagnosis For Gearbox Based On Deep Belief Network
    Yang, Wang
    Zheng, Taisheng
    Li, Zhenxiang
    Yu, Dequan
    Wu, Wenbo
    Fu, Hongyong
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [3] Fault diagnosis of planetary gearbox based on improved composite multi-scale sample entropy
    Li, Wei
    Wang, Fuguang
    Wang, Dongsheng
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2024, 39 (09):
  • [4] Fault Diagnosis of Wind Turbine's Gearbox Based on Improved GA Random Forest Classifier
    Gan, Hao
    Jiao, Bin
    2018 3RD INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL AND ELECTRICAL ENGINEERING (AMEE 2018), 2018, 298 : 206 - 210
  • [5] Gearbox Fault Diagnosis Using a Deep Learning Model With Limited Data Sample
    Saufi, Syahril Ramadhan
    Bin Ahmad, Zair Asrar
    Leong, Mohd Salman
    Lim, Meng Hee
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (10) : 6263 - 6271
  • [6] Fault diagnosis of gearbox based on HMM and improved distance measure
    Yuan, H.-F., 1600, Chinese Vibration Engineering Society (33): : 89 - 94
  • [7] Small sample fault diagnosis for wind turbine gearbox based on lightweight multiscale convolutional neural network
    Wang, Yuan
    Wang, Junnian
    Tong, Pengcheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (09)
  • [8] FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON DEEP LEARNING
    Xiao J.
    Jin J.
    Li C.
    Xu Z.
    Luo S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (05): : 302 - 309
  • [9] Fault diagnosis method of rotating machinery based on improved deep forest model
    Liu D.
    Deng A.
    Zhao M.
    Bian W.
    Xu M.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (21): : 19 - 27
  • [10] Small sample fault diagnosis method for wind turbine gearbox based on optimized generative adversarial networks
    Su, Yuanhao
    Meng, Liang
    Kong, Xiaojia
    Xu, Tongle
    Lan, Xiaosheng
    Li, Yunfeng
    ENGINEERING FAILURE ANALYSIS, 2022, 140