Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data

被引:1
作者
Yu, Yushuai [1 ,2 ]
Chen, Ruiliang [1 ]
Yi, Jialu [1 ]
Huang, Kaiyan [3 ]
Yu, Xin [2 ]
Zhang, Jie [1 ]
Song, Chuangui [1 ,2 ]
机构
[1] Fujian Med Univ Union Hosp, Dept Breast Surg, Fuzhou 350001, Fujian, Peoples R China
[2] Fujian Med Univ, Fujian Canc Hosp, Clin Oncol Sch, Dept Breast Surg, Fuzhou 350014, Fujian, Peoples R China
[3] Fujian Med Univ, Affiliated Hosp 2, Dept Breast & Thyroid Surg, Quanzhou 362000, Fujian, Peoples R China
关键词
Axillary lymph node dissection exemption; Neoadjuvant therapy; Breast cancer; Radiomics; Deep learning; Longitudinal data; clinical axillary lymph node metastasis (cN + ) [1-3]. Historically; NAT's; CHEMOTHERAPY; BIOPSY; METASTASES; HETEROGENEITY; SURGERY;
D O I
10.1016/j.breast.2024.103786
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: In breast cancer (BC) patients with clinical axillary lymph node metastasis (cN+) undergoing neoadjuvant therapy (NAT), precise axillary lymph node (ALN) assessment dictates therapeutic strategy. There is a critical demand for a precise method to assess the axillary lymph node (ALN) status in these patients. Materials and methods: A retrospective analysis was conducted on 160 BC patients undergoing NAT at Fujian Medical University Union Hospital. We analyzed baseline and two-cycle reassessment dynamic contrastenhanced MRI (DCE-MRI) images, extracting 3668 radiomic and 4096 deep learning features, and computing 1834 delta-radiomic and 2048 delta-deep learning features. Light Gradient Boosting Machine (LightGBM), Support Vector Machine (SVM), RandomForest, and Multilayer Perceptron (MLP) algorithms were employed to develop risk models and were evaluated using 10-fold cross-validation. Results: Of the patients, 61 (38.13 %) achieved ypN0 status post-NAT. Univariate and multivariable logistic regression analyses revealed molecular subtypes and Ki67 as pivotal predictors of achieving ypN0 post-NAT. The SVM-based "Data Amalgamation" model that integrates radiomic, deep learning features, and clinical data, exhibited an outstanding AUC of 0.986 (95 % CI: 0.954-1.000), surpassing other models. Conclusion: Our study illuminates the challenges and opportunities inherent in breast cancer management postNAT. By introducing a sophisticated, SVM-based "Data Amalgamation" model, we propose a way towards accurate, dynamic ALN assessments, offering potential for personalized therapeutic strategies in BC.
引用
收藏
页数:9
相关论文
共 37 条
  • [1] Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review
    Ahmed, Muneer
    Purushotham, Arnie D.
    Douek, Michael
    [J]. LANCET ONCOLOGY, 2014, 15 (08) : E351 - E362
  • [2] Unraveling Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an Optimized Treatment Approach
    Bareche, Yacine
    Buisseret, Laurence
    Gruosso, Tina
    Girard, Edwina
    Venet, David
    Dupont, Floriane
    Desmedt, Christine
    Larsimont, Denis
    Park, Morag
    Rothe, Francoise
    Stagg, John
    Sotiriou, Christos
    [J]. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2020, 112 (07): : 708 - 719
  • [3] Sentinel Node Biopsy After Neoadjuvant Chemotherapy in Biopsy-Proven Node-Positive Breast Cancer: The SN FNAC Study
    Boileau, Jean-Francois
    Poirier, Brigitte
    Basik, Mark
    Holloway, Claire M. B.
    Gaboury, Louis
    Sideris, Lucas
    Meterissian, Sarkis
    Arnaout, Angel
    Brackstone, Muriel
    McCready, David R.
    Karp, Stephen E.
    Trop, Isabelle
    Lisbona, Andre
    Wright, Frances C.
    Younan, Rami J.
    Provencher, Louise
    Patocskai, Erica
    Omeroglu, Atilla
    Robidoux, Andre
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (03) : 258 - U150
  • [4] Identification and Resection of Clipped Node Decreases the False-negative Rate of Sentinel Lymph Node Surgery in Patients Presenting With Node-positive Breast Cancer (T0-T4, N1-N2) Who Receive Neoadjuvant Chemotherapy: Results From ACOSOG Z1071 (Alliance)
    Boughey, Judy C.
    Ballman, Karla V.
    Le-Petross, Huong T.
    McCall, Linda M.
    Mittendorf, Elizabeth A.
    Ahrendt, Gretchen M.
    Wilke, Lee G.
    Taback, Bret
    Feliberti, Eric C.
    Hunt, Kelly K.
    [J]. ANNALS OF SURGERY, 2016, 263 (04) : 802 - 807
  • [5] Tumor Biology Correlates With Rates of Breast-Conserving Surgery and Pathologic Complete Response After Neoadjuvant Chemotherapy for Breast Cancer Findings From the ACOSOG Z1071 (Alliance) Prospective Multicenter Clinical Trial
    Boughey, Judy C.
    McCall, Linda M.
    Ballman, Karla V.
    Mittendorf, Elizabeth A.
    Ahrendt, Gretchen M.
    Wilke, Lee G.
    Taback, Bret
    Leitch, A. Marilyn
    Flippo-Morton, Teresa
    Hunt, Kelly K.
    [J]. ANNALS OF SURGERY, 2014, 260 (04) : 608 - 616
  • [6] Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer
    Brooks, Michael D.
    Burness, Monika L.
    Wicha, Max S.
    [J]. CELL STEM CELL, 2015, 17 (03) : 260 - 271
  • [7] Clonal replacement and heterogeneity in breast tumors treated with neoadjuvant HER2-targeted therapy
    Caswell-Jin, Jennifer L.
    McNamara, Katherine
    Reiter, Johannes G.
    Sun, Ruping
    Hu, Zheng
    Ma, Zhicheng
    Ding, Jie
    Suarez, Carlos J.
    Tilk, Susanne
    Raghavendra, Akshara
    Forte, Victoria
    Chin, Suet-Feung
    Bardwell, Helen
    Provenzano, Elena
    Caldas, Carlos
    Lang, Julie
    West, Robert
    Tripathy, Debu
    Press, Michael F.
    Curtis, Christina
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] MRI Radiomics for Assessment of Molecular Subtype, Pathological Complete Response, and Residual Cancer Burden in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy
    Choudhery, Sadia
    Gomez-Cardona, Daniel
    Favazza, Christopher P.
    Hoskin, Tanya L.
    Haddad, Tufia C.
    Goetz, Matthew P.
    Boughey, Judy C.
    [J]. ACADEMIC RADIOLOGY, 2022, 29 : S145 - S154
  • [9] Overfitting
    Cook, J. A.
    Ranstam, J.
    [J]. BRITISH JOURNAL OF SURGERY, 2016, 103 (13) : 1814 - 1814
  • [10] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297