PFCFuse: A Poolformer and CNN Fusion Network for Infrared-Visible Image Fusion

被引:0
作者
Hu, Xinyu [1 ]
Liu, Yang [2 ]
Yang, Feng [3 ]
机构
[1] Guangxi Univ, Sch Comp Elect & Informat, Nanning 530004, Peoples R China
[2] Univ Oulu, Ctr Machine Vis & Signal Anal, Oulu 90014, Finland
[3] Guangxi Univ, Guangxi Key Lab Multimedia Commun Network Technol, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Visualization; Statistical analysis; Predictive models; Feature extraction; Transformers; Data models; Dual-branch feature extraction; infrared image; multimodal image fusion; poolformer; visible image;
D O I
10.1109/TIM.2024.3450061
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Infrared visible image fusion plays a central role in multimodal image fusion. By integrating feature information, we obtain more comprehensive and richer visual data to enhance image quality. However, current image fusion methods often rely on intricate networks to extract parameters from multimodal source images, making it challenging to leverage valuable information for high-quality fusion results completely. In this research, we propose a Poolformer-convolutional neural network (CNN) dual-branch feature extraction fusion network for the fusion of infrared and visible images, termed PFCFuse. This network fully exploits key features in the images and adaptively preserves critical features in the images. To begin with, we provide a feature extractor with a dual-branch poolformer-CNN, using poolformer blocks to extract low-frequency global information, where the basic spatial pooling procedures are used as a substitute for the attention module of the transformer. Second, the model is designed with an adaptively adjusted a-Huber loss, which can stably adjust model parameters and reduce the influence of outliers on model predictions, thereby enhancing the model's robustness while maintaining precision. Compared with state-of-the-art fusion models such as U2Fusion, RFNet, TarDAL, and CDDFuse, we obtain excellent experimental results in both qualitative and quantitative experiments. Compared to the latest dual-branch feature extraction, CDDFuse, our model parameters are reduced by half. The code is available at https://github.com/HXY13/PFCFuse-Image-Fusion.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Feature dynamic alignment and refinement for infrared-visible image fusion: Translation robust fusion
    Li, Huafeng
    Zhao, Junzhi
    Li, Jinxing
    Yu, Zhengtao
    Lu, Guangming
    INFORMATION FUSION, 2023, 95 : 26 - 41
  • [2] MSFNet: MultiStage Fusion Network for infrared and visible image fusion
    Wang, Chenwu
    Wu, Junsheng
    Zhu, Zhixiang
    Chen, Hao
    NEUROCOMPUTING, 2022, 507 : 26 - 39
  • [3] DCFusion: A Dual-Frequency Cross-Enhanced Fusion Network for Infrared and Visible Image Fusion
    Wu, Dan
    Han, Mina
    Yang, Yang
    Zhao, Shan
    Rao, Yujing
    Li, Hao
    Lin, Xing
    Zhou, Chengjiang
    Bai, Haicheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [4] Multi-Level Adaptive Attention Fusion Network for Infrared and Visible Image Fusion
    Hu, Ziming
    Kong, Quan
    Liao, Qing
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 366 - 370
  • [5] MAFusion: Multiscale Attention Network for Infrared and Visible Image Fusion
    Li, Xiaoling
    Chen, Houjin
    Li, Yanfeng
    Peng, Yahui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] HDCTfusion: Hybrid Dual-Branch Network Based on CNN and Transformer for Infrared and Visible Image Fusion
    Wang, Wenqing
    Li, Lingzhou
    Yang, Yifei
    Liu, Han
    Guo, Runyuan
    SENSORS, 2024, 24 (23)
  • [7] Strawberry Defect Identification Using Deep Learning Infrared-Visible Image Fusion
    Lu, Yuze
    Gong, Mali
    Li, Jing
    Ma, Jianshe
    AGRONOMY-BASEL, 2023, 13 (09):
  • [8] Infrared-Visible Synthetic Data from Game Engine for Image Fusion Improvement
    Gu, Xinjie
    Liu, Gang
    Zhang, Xiangbo
    Tang, Lili
    Zhou, Xihong
    Qiu, Weifang
    IEEE TRANSACTIONS ON GAMES, 2024, 16 (02) : 291 - 302
  • [9] Infrared and Visible Image Fusion via Multiscale Receptive Field Amplification Fusion Network
    Ji, Chuanming
    Zhou, Wujie
    Lei, Jingsheng
    Ye, Lv
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 493 - 497
  • [10] Infrared and visible image fusion with supervised convolutional neural network
    An, Wen-Bo
    Wang, Hong-Mei
    OPTIK, 2020, 219