Parameter Identification in Manufacturing Systems Using Physics-Informed Neural Networks

被引:0
|
作者
Khalid, Md Meraj [1 ]
Schenkendorf, Rene [1 ]
机构
[1] Harz Univ Appl Sci, Automat & Comp Sci Dept, Wernigerode, Germany
关键词
manufacturing systems; physics-informed neural network; partial differential equations; distributed parameter system; parameter sensitivities; uncertainty quantification;
D O I
10.1007/978-3-031-57496-2_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we explore the application of Physics-Informed Neural Networks (PINNs) in parameter identification for continuum models of manufacturing systems. Although these models are invaluable for production planning at the factory level, the reliability of model-based decision-making strategies hinges significantly on accurate parameter estimation. We emphasize the distinct differences between PINNs and conventional parameter identification methods, particularly in terms of parameter sensitivities and uncertainty quantification. Our findings reveal that the PINN-based identification framework results in more significant parameter uncertainties. Consequently, this prompts us to discuss the implications for experimental designs, system identification, and the pivotal role of smart data.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [1] Structural parameter identification using physics-informed neural networks
    Guo, Xin-Yu
    Fang, Sheng-En
    MEASUREMENT, 2023, 220
  • [2] Modelling and parameter identification of penicillin fermentation using physics-informed neural networks
    Zhao, Siqi
    Zhao, Zhonggai
    Liu, Fei
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [3] Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification
    Shuheng Liao
    Tianju Xue
    Jihoon Jeong
    Samantha Webster
    Kornel Ehmann
    Jian Cao
    Computational Mechanics, 2023, 72 : 499 - 512
  • [4] Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification
    Liao, Shuheng
    Xue, Tianju
    Jeong, Jihoon
    Webster, Samantha
    Ehmann, Kornel
    Cao, Jian
    COMPUTATIONAL MECHANICS, 2023, 72 (03) : 499 - 512
  • [5] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [6] Damage identification for plate structures using physics-informed neural networks
    Zhou, Wei
    Xu, Y. F.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 209
  • [7] Inverse problems in hydrodynamics lubrication: Parameter identification in the Reynold equation by using physics-informed neural networks
    Xi, Yinhu
    Sun, Rongkun
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2024,
  • [8] Inverse problems in hydrodynamics lubrication: Parameter identification in the Reynold equation by using physics-informed neural networks
    Xi, Yinhu
    Sun, Rongkun
    Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2024,
  • [9] Kinetics Parameter Identification of Chain Shuttling Polymerization Based on Physics-Informed Neural Networks
    Zhao, Jieming
    Tian, Zhou
    Zhang, Xixiang
    Duan, Zhaoyang
    Lu, Jingyi
    IFAC PAPERSONLINE, 2024, 58 (14): : 184 - 191
  • [10] Error homogenization in physics-informed neural networks for modeling in manufacturing
    Cooper, Clayton
    Zhang, Jianjing
    Gao, Robert X.
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 71 : 298 - 308