HFHFusion: A Heterogeneous Feature Highlighted method for infrared and visible image fusion

被引:0
|
作者
Zheng, Yulong [1 ]
Zhao, Yan [1 ]
Chen, Jian [2 ]
Chen, Mo [1 ]
Yu, Jiaqi [3 ]
Wei, Jian [1 ]
Wang, Shigang [1 ]
机构
[1] Jilin Univ, Coll Commun Engn, Nanhu Rd 5372, Changchun 130012, Jilin, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Nanhu Rd 3888, Changchun 130033, Jilin, Peoples R China
[3] Beijing Inst Control & Elect Technol, Muxidi Beili Jia 51, Beijing 100038, Peoples R China
关键词
Deep learning; Image fusion; Heterogeneous feature highlighted; RCF edge detection; NETWORK; NEST;
D O I
10.1016/j.optcom.2024.130941
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, infrared and visible image fusion has attracted considerable attention from researchers. Under extreme or low resolution conditions, the existing image fusion algorithms are easily misled by redundant information in visible images. It is difficult to maintain thermal radiation targets in infrared images clearly. To address this issue, we introduce an AutoEncoder framework for image fusion named HFHFusion(heterogeneous feature highlighted Fusion Network), which integrates a heterogeneous feature extraction network and an RCF edge detection network.The HFHFusion framework introduces a heterogeneous two-branch feature extraction structure, leveraging distinct feature extraction methods tailored to diverse sensor inputs. Firstly, we design an edge extraction network specialized for visible images, aimed at capturing detailed texture information effectively. Secondly, we devise an infrared image contrast enhancement network leveraging a channel attention mechanism, directly linked to an encoder. Our experiments demonstrate that this network facilitates better integration of infrared thermal radiation information into the fusion results. To effectively integrate image features from multimodal scenes into a unified network, we propose a heterogeneous feature extraction network, combining an AutoEncoder structure with a CNN structure. It underscores the significance of the feature extraction process in image fusion tasks. Extensive experiments conducted on public datasets highlight the advantages of our HFHFusion over state-of-the-art image fusion algorithms and task-specific image fusion methods. HFHFusion was subjected to corresponding fusion test experiments on the TNO, RoadScene and M3FD data sets respectively and compared with 8 excellent fusion algorithms. The experiments have demonstrated that our method is more suitable for extreme conditions with complex environments and low resolutions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Fusion of infrared and visible images based on image enhancement and feature extraction
    Luo, Jinzhe
    Rong, Chuanzhen
    Jia, Yongxing
    Yang, Yu
    Zhu, Ying
    2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 1, 2019, : 212 - 216
  • [42] Multiscale feature learning and attention mechanism for infrared and visible image fusion
    Li Gao
    DeLin Luo
    Song Wang
    Science China Technological Sciences, 2024, 67 : 408 - 422
  • [43] Self-supervised feature adaption for infrared and visible image fusion
    Zhao, Fan
    Zhao, Wenda
    Yao, Libo
    Liu, Yu
    INFORMATION FUSION, 2021, 76 : 189 - 203
  • [44] HATF: Multi-Modal Feature Learning for Infrared and Visible Image Fusion via Hybrid Attention Transformer
    Liu, Xiangzeng
    Wang, Ziyao
    Gao, Haojie
    Li, Xiang
    Wang, Lei
    Miao, Qiguang
    REMOTE SENSING, 2024, 16 (05)
  • [45] Physics driven deep Retinex fusion for adaptive infrared and visible image fusion
    Gu, Yuanjie
    Xiao, Zhibo
    Guan, Yinghan
    Dai, Haoran
    Liu, Cheng
    Xue, Liang
    Wang, Shouyu
    OPTICAL ENGINEERING, 2023, 62 (08) : 83101
  • [46] MFT: Multi-scale Fusion Transformer for Infrared and Visible Image Fusion
    Zhang, Chen-Ming
    Yuan, Chengbo
    Luo, Yong
    Zhou, Xin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 485 - 496
  • [47] High Efficient Spatial and Radiation Information Mutual Enhancing Fusion Method for Visible and Infrared Image
    Liu, Zongzhen
    Wei, Yuxing
    Huang, Geli
    Li, Chao
    Zhang, Jianlin
    Li, Meihui
    Liu, Dongxu
    Peng, Xiaoming
    IEEE ACCESS, 2024, 12 : 6971 - 6992
  • [48] Infrared and Visible Images Registration Using Feature and Area for Image Fusion
    Zhang, Xiuqiong
    Qin, Hongyin
    Wang, Mingrong
    Yang, Jian
    FOURTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2011): MACHINE VISION, IMAGE PROCESSING, AND PATTERN ANALYSIS, 2012, 8349
  • [49] Target interpretation of visible light image and infrared image fusion method
    Sun, Wei
    Xiao, Wen
    Pan, Feng
    Du, Chao
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462
  • [50] DIVFusion: Darkness-free infrared and visible image fusion
    Tang, Linfeng
    Xiang, Xinyu
    Zhang, Hao
    Gong, Meiqi
    Ma, Jiayi
    INFORMATION FUSION, 2023, 91 : 477 - 493