Investigation of Electric Field Tunable Optical and Electrical Characteristics of Zigzag and Armchair Graphene Nanoribbons: An Ab Initio Approach

被引:0
作者
Emir, Recep [1 ]
Tuncsiper, Cagatay [2 ]
Yamacli, Dilek Surekci [3 ]
Yamacli, Serhan [4 ]
Tekin, Sezai Alper [5 ]
机构
[1] Erciyes Univ, Dept Elect & Elect Engn, TR-38010 Kayseri, Turkiye
[2] Centrade Fulfillment Serv Ltd, TR-35010 Izmir, Turkiye
[3] Izmir Democracy Univ, Dept Econ, TR-35140 Izmir, Turkiye
[4] Izmir Democracy Univ, Dept Biomed Engn, TR-35140 Izmir, Turkiye
[5] Erciyes Univ, Dept Ind Design Engn, TR-38010 Kayseri, Turkiye
关键词
graphene nanoribbons; DFT; optical properties; Kubo-Greenwood formalism; Landauer approach; COMPLEX REFRACTIVE-INDEX; ABSORPTION; SEMICONDUCTOR; CONDUCTIVITY; SPECTRA;
D O I
10.3390/nano14171446
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene nanoribbons (GNRs), categorized into zigzag and armchair types, hold significant promise in electronics due to their unique properties. In this study, optical properties of zigzag and armchair GNRs are investigated using density functional theory (DFT) in conjunction with Kubo-Greenwood formalism. Our findings reveal that optical characteristics of both GNR types can be extensively modulated through the application of a transverse electric field, e.g., the refractive index of the a zigzag GNR is shown to vary in the range of n = 0.3 and n = 9.9 for the transverse electric field values between 0 V/& Aring; and 10 V/& Aring;. Additionally, electrical transmission spectra and the electrical conductivities of the GNRs are studied using DFT combined with non-equilibrium Green's function formalism, again uncovering a strong dependence on the transverse electric field. For example, the conductance of the armchair GNR is shown to vary in the range of G = 6 mu A/V and G = 201 mu A/V by the transverse electric field. These results demonstrate the potential of GNRs for use in electronically controlled optoelectronic devices, promising a broad range of applications in advanced electronic systems.
引用
收藏
页数:19
相关论文
共 90 条
[1]   Theoretical Calculation of Optical Absorption Spectrum for Armchair Graphene Nanoribbon [J].
Ahmadi, E. ;
Asgari, A. .
2ND INTERNATIONAL SCIENCE, SOCIAL SCIENCE, ENGINEERING AND ENERGY CONFERENCE 2010 (I-SEEC 2010), 2011, 8 :25-29
[2]   Optical Absorption of Graphene Nanoribbon in Transverse and Modulated Longitudinal Electric Field [J].
Alaei, R. ;
Sheikhi, M. H. .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2013, 21 (03) :183-197
[3]  
[Anonymous], 2014, Quantumwise ATK
[4]   Optical properties of two-dimensional zigzag and armchair graphyne nanoribbon semiconductor [J].
Asadpour, Mohamad ;
Jafari, Mahmoud ;
Asadpour, Milad ;
Jafari, Maryam .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2015, 139 :380-384
[5]   Ultrafast nonlinear optical response of Dirac fermions in graphene [J].
Baudisch, Matthias ;
Marini, Andrea ;
Cox, Joel D. ;
Zhu, Tony ;
Silva, Francisco ;
Teichmann, Stephan ;
Massicotte, Mathieu ;
Koppens, Frank ;
Levitov, Leonid S. ;
Garcia de Abajo, F. Javier ;
Biegert, Jens .
NATURE COMMUNICATIONS, 2018, 9
[6]   Optical properties of chiral graphene nanoribbons: a first principle study [J].
Berahman, M. ;
Asad, M. ;
Sanaee, M. ;
Sheikhi, M. H. .
OPTICAL AND QUANTUM ELECTRONICS, 2015, 47 (10) :3289-3300
[7]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[8]   Optical constants of graphene layers in the visible range [J].
Bruna, M. ;
Borini, S. .
APPLIED PHYSICS LETTERS, 2009, 94 (03)
[9]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[10]   Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N=9 Armchair Graphene Nanoribbons [J].
Chen, Zongping ;
Wang, Hai I. ;
Teyssandier, Joan ;
Mali, Kunal S. ;
Dumslaff, Tim ;
Ivanov, Ivan ;
Zhang, Wen ;
Ruffieux, Pascal ;
Fasel, Roman ;
Raeder, Hans Joachim ;
Turchinovich, Dmitry ;
De Feyter, Steven ;
Feng, Xinliang ;
Klaeui, Mathias ;
Narita, Akimitsu ;
Bonn, Mischa ;
Muellen, Klaus .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) :3635-3638