Collaborative Survival Analysis on Predicting Alzheimer's Disease Progression

被引:0
作者
Xu, Wanwan [1 ]
Wang, Selena [1 ]
Shen, Li [2 ]
Zhao, Yize [1 ]
机构
[1] Yale Univ, Yale Sch Publ Hlth, Dept Biostat, 300 Geroge St, New Haven, CT 06510 USA
[2] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, B306 Richards Bldg,3700 Hamilton Walk, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Alzheimer's disease; CCA; Imaging genetics; Multi-model; Survival analysis; CANONICAL CORRELATION-ANALYSIS; ASSOCIATION; LASSO; ALGORITHM; DIAGNOSIS; VARIANTS; DEMENTIA; AMYGDALA; MODELS; TOMM40;
D O I
10.1007/s12561-024-09459-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of brain imaging and genetics has gained increasing importance in recent years. Combining genetic variations with brain structures not only enhances predictive performance for various neurological and psychiatric disorders, such as Alzheimer's Disease (AD), but also provides insights into phenotypic variance across multiple imaging modalities. Among the studies investigating AD with both imaging and genetic data, how to conduct survival analysis for AD progression using high-dimensional clinical data remains under explored. In this paper, we propose Collaborative Survival Analysis (CoSA), a novel framework that incorporates multiple modalities to predict time-to-event outcomes and simultaneously extract discriminative features. Inspired by Canonical Correlation Analysis (CCA), CoSA combines the Cox Proportional Hazard model (CoxPH) to integrally analyze the predictive performance of high-dimensional modalities for longitudinal outcomes. The proposed method is evaluated through both simulation studies and the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, exhibiting comparable or superior performance across various settings. In the application using the ADNI database, information from genetic biomarkers (SNPs), structural MRI scans (VBM), and PET scans (FDG) is utilized to predict the progression of Mild Cognitive Impairment (MCI) and early Alzheimer's Disease (AD). The results suggest that the combination of brain imaging and genetic features improves time-to-event prediction over using either modality alone or directly concatenating both. Furthermore, our study identifies both brain regions and genes associated with neuron development and memory processing, consistent with existing AD literature.
引用
收藏
页数:24
相关论文
共 61 条
[1]   Identifying brain functional connectivity alterations during different stages of Alzheimer's disease [J].
Ahmadi, Hessam ;
Fatemizadeh, Emad ;
Motie-Nasrabadi, Ali .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2022, 132 (10) :1005-1013
[2]   Biomarker Identification Through Integrating fMRI and Epigenetics [J].
Bai, Yuntong ;
Pascal, Zille ;
Hu, Wenxing ;
Calhoun, Vince D. ;
Wang, Yu-Ping .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (04) :1186-1196
[3]  
Bao JX, 2022, BIOCOMPUT-PAC SYM, P97
[4]   Apolipoprotein CI Knock-Out Mice Display Impaired Memory Functions [J].
Berbee, Jimmy F. P. ;
Vanmierlo, Tim ;
Abildayeva, Karlygash ;
Blokland, Arjan ;
Jansen, Paula J. ;
Luetjohann, Dieter ;
Gautier, Thomas ;
Sijbrands, Eric ;
Prickaerts, Jos ;
Hadfoune, M'hamed ;
Ramaekers, Frans C. S. ;
Kuipers, Folkert ;
Rensen, Patrick C. N. ;
Mulder, Monique .
JOURNAL OF ALZHEIMERS DISEASE, 2011, 23 (04) :737-747
[5]   Medial temporal lobe connectivity and its associations with cognition in early Alzheimer's disease [J].
Berron, David ;
van Westen, Danielle ;
Ossenkoppele, Rik ;
Strandberg, Olof ;
Hansson, Oskar .
BRAIN, 2020, 143 :1233-1248
[6]   Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge [J].
Bron, Esther E. ;
Smits, Marion ;
van der Flier, Wiesje M. ;
Vrenken, Hugo ;
Barkhof, Frederik ;
Scheltens, Philip ;
Papma, Janne M. ;
Steketee, Rebecca M. E. ;
Orellana, Carolina Mendez ;
Meijboom, Rozanna ;
Pinto, Madalena ;
Meireles, Joana R. ;
Garrett, Carolina ;
Bastos-Leite, Antonio J. ;
Abdulkadir, Ahmed ;
Ronneberger, Olaf ;
Amoroso, Nicola ;
Bellotti, Roberto ;
Cardenas-Pena, David ;
Alvarez-Meza, Andres M. ;
Dolph, Chester V. ;
Iftekharuddin, Khan M. ;
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Fonov, Vladimir S. ;
Franke, Katja ;
Gaser, Christian ;
Ledig, Christian ;
Guerrero, Ricardo ;
Tong, Tong ;
Gray, Katherine R. ;
Moradi, Elaheh ;
Tohka, Jussi ;
Routier, Alexandre ;
Durrleman, Stanley ;
Sarica, Alessia ;
Di Fatta, Giuseppe ;
Sensi, Francesco ;
Chincarini, Andrea ;
Smith, Garry M. ;
Stoyanov, Zhivko V. ;
Sorensen, Lauge ;
Nielsen, Mads ;
Tangaro, Sabina ;
Inglese, Paolo ;
Wachinger, Christian ;
Reuter, Martin ;
van Swieten, John C. ;
Niessen, Wiro J. ;
Klein, Stefan .
NEUROIMAGE, 2015, 111 :562-579
[7]   Distinctive alterations of the cingulum bundle during aging and Alzheimer's disease [J].
Catheline, Gwenaelle ;
Periot, Olivier ;
Amirault, Marion ;
Braun, Marc ;
Dartigues, Jean-Francois ;
Auriacombe, Sophie ;
Allard, Michele .
NEUROBIOLOGY OF AGING, 2010, 31 (09) :1582-1592
[8]   Vitamin E and Alzheimer's Disease-Is It Time for Personalized Medicine? [J].
Cervantes, Breana ;
Ulatowski, Lynn M. .
ANTIOXIDANTS, 2017, 6 (03)
[9]   Fused lasso algorithm for Cox proportional hazards and binomial logit models with application to copy number profiles [J].
Chaturvedi, Nimisha ;
de Menezes, Renee X. ;
Goeman, Jelle J. .
BIOMETRICAL JOURNAL, 2014, 56 (03) :477-492
[10]   Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis [J].
Chen, Jun ;
Bushman, Frederic D. ;
Lewis, James D. ;
Wu, Gary D. ;
Li, Hongzhe .
BIOSTATISTICS, 2013, 14 (02) :244-258