A Large-Scale Spatio-Temporal Multimodal Fusion Framework for Traffic Prediction

被引:2
|
作者
Zhou, Bodong [1 ]
Liu, Jiahui [2 ]
Cui, Songyi [3 ]
Zhao, Yaping [2 ]
机构
[1] Shanghai EchoBlend Internet Technol Co Ltd, Tech Consulting Dept, Shanghai 201111, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong 999077, Peoples R China
[3] Univ Hong Kong, Dept Ind & Mfg Syst Engn, Hong Kong 999077, Peoples R China
来源
BIG DATA MINING AND ANALYTICS | 2024年 / 7卷 / 03期
关键词
Deep learning; Recurrent neural networks; Soft sensors; Urban planning; Transportation; Prediction methods; Information processing; spatio-temporal; traffic prediction; multimodal fusion; learning representation; NEURAL-NETWORK; SPEED PREDICTION; ARIMA; FLOW;
D O I
10.26599/BDMA.2024.9020020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic prediction is crucial for urban planning and transportation management, and deep learning techniques have emerged as effective tools for this task. While previous works have made advancements, they often overlook comprehensive analyses of spatio-temporal distributions and the integration of multimodal representations. Our research addresses these limitations by proposing a large-scale spatio-temporal multimodal fusion framework that enables accurate predictions based on location queries and seamlessly integrates various data sources. Specifically, we utilize Convolutional Neural Networks (CNNs) for spatial information processing and a combination of Recurrent Neural Networks (RNNs) for final spatio-temporal traffic prediction. This framework not only effectively reveals its ability to integrate various modal data in the spatio-temporal hyperspace, but has also been successfully implemented in a real-world large-scale map, showcasing its practical importance in tackling urban traffic challenges. The findings presented in this work contribute to the advancement of traffic prediction methods, offering valuable insights for further research and application in addressing real-world transportation challenges.
引用
收藏
页码:621 / 636
页数:16
相关论文
共 50 条
  • [41] STANN: A Spatio-Temporal Attentive Neural Network for Traffic Prediction
    He, Zhixiang
    Chow, Chi-Yin
    Zhang, Jia-Dong
    IEEE ACCESS, 2019, 7 : 4795 - 4806
  • [42] Traffic Accident Prediction Based on Deep Spatio-temporal Analysis
    Yu, Le
    Du, Bowen
    Hu, Xiao
    Sun, Leilei
    Lv, Weifeng
    Huang, Runhe
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 995 - 1002
  • [43] Classification and indexing scheme of large-scale image repository for spatio-temporal landmark recognition
    Kim, Daehoon
    Rho, Seungmin
    Jun, Sanghoon
    Hwang, Eenjun
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2015, 22 (02) : 201 - 213
  • [44] The Large-Scale Crowd Behavior Perception Based on Spatio-Temporal Viscous Fluid Field
    Su, Hang
    Yang, Hua
    Zheng, Shibao
    Fan, Yawen
    Wei, Sha
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (10) : 1575 - 1589
  • [45] A novel spatio-temporal convolutional neural framework for multimodal emotion recognition
    Sharafi, Masoumeh
    Yazdchi, Mohammadreza
    Rasti, Reza
    Nasimi, Fahimeh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [46] Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning
    Zhang, Weibin
    Yu, Yinghao
    Qi, Yong
    Shu, Feng
    Wang, Yinhai
    TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2019, 15 (02) : 1688 - 1711
  • [47] Spatio-temporal dynamics of vehicles: Fusion of traffic data and context information
    Bolanos-Martinez, Daniel
    Bermudez-Edo, Maria
    Garrido, Jose Luis
    Delgado-Marquez, Blanca L.
    DATA IN BRIEF, 2024, 53
  • [48] Spatio-temporal fusion graph convolutional network for traffic flow forecasting
    Ma, Ying
    Lou, Haijie
    Yan, Ming
    Sun, Fanghui
    Li, Guoqi
    INFORMATION FUSION, 2024, 104
  • [49] Spatio-Temporal Traffic Flow Prediction in Madrid: An Application of Residual Convolutional Neural Networks
    Velez-Serrano, Daniel
    Alvaro-Meca, Alejandro
    Sebastian-Huerta, Fernando
    Velez-Serrano, Jose
    MATHEMATICS, 2021, 9 (09)
  • [50] Spatio-Temporal Memory Augmented Multi-Level Attention Network for Traffic Prediction
    Liu, Yan
    Guo, Bin
    Meng, Jingxiang
    Zhang, Daqing
    Yu, Zhiwen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2643 - 2658