A Multi-Omics, Machine Learning-Aware, Genome-Wide Metabolic Model of Bacillus Subtilis Refines the Gene Expression and Cell Growth Prediction

被引:3
作者
Bi, Xinyu [1 ,2 ]
Cheng, Yang [1 ,2 ]
Lv, Xueqin [1 ,2 ]
Liu, Yanfeng [1 ,2 ]
Li, Jianghua [1 ,2 ]
Du, Guocheng [1 ,2 ]
Chen, Jian [1 ,2 ]
Liu, Long [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Sci Ctr Future Foods, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
cell growth; comprehensive metabolic network model; gene expression; machine learning; multiomics knowledgebase; CONSTRUCTION; INTEGRATION; PROTEOMICS; DATABASE;
D O I
10.1002/advs.202408705
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Given the extensive heterogeneity and variability, understanding cellular functions and regulatory mechanisms through the analysis of multi-omics datasets becomes extremely challenging. Here, a comprehensive modeling framework of multi-omics machine learning and metabolic network models are proposed that covers various cellular biological processes across multiple scales. This model on an extensive normalized compendium of Bacillus subtilis is validated, which encompasses gene expression data from environmental perturbations, transcriptional regulation, signal transduction, protein translation, and growth measurements. Comparison with high-throughput experimental data shows that EM_iBsu1209-ME, constructed on this basis, can accurately predict the expression of 605 genes and the synthesis of 23 metabolites under different conditions. This study paves the way for the construction of comprehensive biological databases and high-performance multi-omics metabolic models to achieve accurate predictive analysis in exploring complex mechanisms of cell genotypes and phenotypes.
引用
收藏
页数:12
相关论文
共 45 条
[11]   Protein Abundance Prediction Through Machine Learning Methods [J].
Ferreira, Mauricio ;
Ventorim, Rafaela ;
Almeida, Eduardo ;
Silveira, Sabrina ;
Silveira, Wendel .
JOURNAL OF MOLECULAR BIOLOGY, 2021, 433 (22)
[12]   A Comprehensive Proteomics and Transcriptomics Analysis of Bacillus subtilis Salt Stress Adaptation [J].
Hahne, Hannes ;
Maeder, Ulrike ;
Otto, Andreas ;
Bonn, Florian ;
Steil, Leif ;
Bremer, Erhard ;
Hecker, Michael ;
Becher, Doerte .
JOURNAL OF BACTERIOLOGY, 2010, 192 (03) :870-882
[13]   In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol [J].
Hao, Tong ;
Han, Binbin ;
Ma, Hongwu ;
Fu, Jing ;
Wang, Hui ;
Wang, Zhiwen ;
Tang, Bincai ;
Chen, Tao ;
Zhao, Xueming .
MOLECULAR BIOSYSTEMS, 2013, 9 (08) :2034-2044
[14]  
Has P., 2011, IEEE T IMAGE PROCESS, V21, P1437
[15]   The BioCyc collection of microbial genomes and metabolic pathways [J].
Karp, Peter D. ;
Billington, Richard ;
Caspi, Ron ;
Fulcher, Carol A. ;
Latendresse, Mario ;
Kothari, Anamika ;
Keseler, Ingrid M. ;
Krummenacker, Markus ;
Midford, Peter E. ;
Ong, Quang ;
Ong, Wai Kit ;
Paley, Suzanne M. ;
Subhraveti, Pallavi .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) :1085-1093
[16]   Microbial physiology and ecology of slow growth [J].
Koch, AL .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1997, 61 (03) :305-&
[17]   Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis [J].
Koo, Byoung-Mo ;
Kritikos, George ;
Farelli, Jeremiah D. ;
Todor, Horia ;
Tong, Kenneth ;
Kimsey, Harvey ;
Wapinski, Ilan ;
Galardini, Marco ;
Cabal, Angelo ;
Peters, Jason M. ;
Hachmann, Anna-Barbara ;
Rudner, David Z. ;
Allen, Karen N. ;
Typas, Athanasios ;
Gross, Carol A. .
CELL SYSTEMS, 2017, 4 (03) :291-305
[18]   Microbial single-cell RNA sequencing by split-pool barcoding [J].
Kuchina, Anna ;
Brettner, Leandra M. ;
Paleologu, Luana ;
Roco, Charles M. ;
Rosenberg, Alexander B. ;
Carignano, Alberto ;
Kibler, Ryan ;
Hirano, Matthew ;
DePaolo, R. William ;
Seelig, Georg .
SCIENCE, 2021, 371 (6531) :798-+
[19]   Modeling regulatory networks using machine learning for systems metabolic engineering [J].
Kwon, Mun Su ;
Lee, Byung Tae ;
Lee, Sang Yup ;
Kim, Hyun Uk .
CURRENT OPINION IN BIOTECHNOLOGY, 2020, 65 :163-170
[20]   Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance [J].
Lewis, Joshua E. ;
Kemp, Melissa L. .
NATURE COMMUNICATIONS, 2021, 12 (01)