A Multi-Omics, Machine Learning-Aware, Genome-Wide Metabolic Model of Bacillus Subtilis Refines the Gene Expression and Cell Growth Prediction

被引:3
作者
Bi, Xinyu [1 ,2 ]
Cheng, Yang [1 ,2 ]
Lv, Xueqin [1 ,2 ]
Liu, Yanfeng [1 ,2 ]
Li, Jianghua [1 ,2 ]
Du, Guocheng [1 ,2 ]
Chen, Jian [1 ,2 ]
Liu, Long [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Sci Ctr Future Foods, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
cell growth; comprehensive metabolic network model; gene expression; machine learning; multiomics knowledgebase; CONSTRUCTION; INTEGRATION; PROTEOMICS; DATABASE;
D O I
10.1002/advs.202408705
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Given the extensive heterogeneity and variability, understanding cellular functions and regulatory mechanisms through the analysis of multi-omics datasets becomes extremely challenging. Here, a comprehensive modeling framework of multi-omics machine learning and metabolic network models are proposed that covers various cellular biological processes across multiple scales. This model on an extensive normalized compendium of Bacillus subtilis is validated, which encompasses gene expression data from environmental perturbations, transcriptional regulation, signal transduction, protein translation, and growth measurements. Comparison with high-throughput experimental data shows that EM_iBsu1209-ME, constructed on this basis, can accurately predict the expression of 605 genes and the synthesis of 23 metabolites under different conditions. This study paves the way for the construction of comprehensive biological databases and high-performance multi-omics metabolic models to achieve accurate predictive analysis in exploring complex mechanisms of cell genotypes and phenotypes.
引用
收藏
页数:12
相关论文
共 45 条
[1]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[2]   etiBsu1209: A comprehensive multiscale metabolic model for Bacillus subtilis [J].
Bi, Xinyu ;
Cheng, Yang ;
Xu, Xianhao ;
Lv, Xueqin ;
Liu, Yanfeng ;
Li, Jianghua ;
Du, Guocheng ;
Chen, Jian ;
Ledesma-Amaro, Rodrigo ;
Liu, Long .
BIOTECHNOLOGY AND BIOENGINEERING, 2023, 120 (06) :1623-1639
[3]   Construction of Multiscale Genome-Scale Metabolic Models: Frameworks and Challenges [J].
Bi, Xinyu ;
Liu, Yanfeng ;
Li, Jianghua ;
Du, Guocheng ;
Lv, Xueqin ;
Liu, Long .
BIOMOLECULES, 2022, 12 (05)
[4]   Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis [J].
Borkowski, Olivier ;
Goelzer, Anne ;
Schaffer, Marc ;
Calabre, Magali ;
Maeder, Ulrike ;
Aymerich, Stephane ;
Jules, Matthieu ;
Fromion, Vincent .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (05)
[5]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[6]   BRENDA, the ELIXIR core data resource in 2021: new developments and updates [J].
Chang, Antje ;
Jeske, Lisa ;
Ulbrich, Sandra ;
Hofmann, Julia ;
Koblitz, Julia ;
Schomburg, Ida ;
Neumann-Schaal, Meina ;
Jahn, Dieter ;
Schomburg, Dietmar .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D498-D508
[7]   A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth [J].
Culley, Christopher ;
Vijayakumar, Supreeta ;
Zampieri, Guido ;
Angione, Claudio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (31) :18869-18879
[8]   Implications of Big Data for cell biology [J].
Dolinski, Kara ;
Troyanskaya, Olga G. .
MOLECULAR BIOLOGY OF THE CELL, 2015, 26 (14) :2575-2578
[9]  
Du B, 2019, PLOS COMPUT BIOL, V15, DOI [10.1371/journal.pcbi.1007525, 10.1371/journal.pcbi.1007525.r001, 10.1371/journal.pcbi.1007525.r002, 10.1371/journal.pcbi.1007525.r003, 10.1371/journal.pcbi.1007525.r004]
[10]   Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data [J].
Faria, Jose P. ;
Overbeek, Ross ;
Taylor, Ronald C. ;
Conrad, Neal ;
Vonstein, Veronika ;
Goelzer, Anne ;
Fromion, Vincent ;
Rocha, Miguel ;
Rocha, Isabel ;
Henry, Christopher S. .
FRONTIERS IN MICROBIOLOGY, 2016, 7