Panchromatic light-harvesting antenna by supramolecular exciton band engineering for heteromeric dye foldamer

被引:2
|
作者
Schulz, Alexander [1 ]
Froehlich, Rebecca [2 ]
Jayachandran, Ajay [2 ]
Schneider, Franziska [1 ]
Stolte, Matthias [1 ,3 ]
Brixner, Tobias [2 ,3 ]
Wuerthner, Frank [1 ,3 ]
机构
[1] Univ Wurzburg, Inst Organ Chem, D-97074 Hubland, Germany
[2] Univ Wurzburg, Inst Phys & Theoret Chem, D-97074 Wurzburg, Germany
[3] Univ Wurzburg, Ctr Nanosyst Chem CNC, Theodor Boveri Weg, D-97074 Wurzburg, Germany
来源
CHEM | 2024年 / 10卷 / 09期
关键词
FLUORESCENCE QUANTUM YIELDS; MEROCYANINE DYES; ENERGY; COUPLINGS; DIMERS;
D O I
10.1016/j.chempr.2024.05.023
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Natural photosystems accomplish panchromatic light absorption by different chromophores that are non-covalently embedded in protein matrices and mostly lack close dye-dye interactions. In this article, we introduce a light-harvesting (LH) system established by four different merocyanine dyes that are co-facially stacked by dipole-dipole interactions and a peptide-like backbone in a folded heteromer architecture to afford a panchromatic absorption band consisting of several strongly coupled exciton states. This exciton manifold allows for ultrafast and efficient energy transport in the artificial antenna. Furthermore, due to the tight stacking of the dyes in their folded state, non-radiative processes are slowed down, thereby increasing the lifetime of the excited state and the fluorescence quantum yield from <3% for the individual dyes up to 38% for the folda-heteromer. Together with the panchromatic absorption, this leads to a substantial improvement of the fluorescence brightness upon broadband excitation in comparison with its constituent chromophores.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Light-harvesting processes in the dynamic photosynthetic antenna
    Duffy, C. D. P.
    Valkunas, L.
    Ruban, A. V.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (43) : 18752 - 18770
  • [32] Light-Harvesting Antenna System for Molecular Electronics
    Anoop, K. M.
    Mohanta, Kallol
    Pai, Ranjith Krishna
    IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (06): : 1570 - 1575
  • [33] Assemblies of supramolecular porphyrin dimers in pentagonal and hexagonal arrays exhibiting light-harvesting antenna function
    Hajjaj, F
    Yoon, ZS
    Yoon, MC
    Park, J
    Satake, A
    Kim, DH
    Kobuke, Y
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (14) : 4612 - 4623
  • [34] REGULATION OF CYANOBACTERIAL LIGHT-HARVESTING ANTENNA DEVELOPMENT
    Manodori, A.
    Oguist, G.
    Melis, A.
    PLANT PHYSIOLOGY, 1984, 75 : 91 - 91
  • [35] A DNA-Based Light-Harvesting Antenna
    Garo, Florian
    Haener, Robert
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (04) : 916 - 919
  • [36] A new approach to light-harvesting with dendritic antenna
    Aida, T
    Jiang, DL
    Yashima, E
    Okamoto, Y
    THIN SOLID FILMS, 1998, 331 (1-2) : 254 - 258
  • [37] Supramolecular Structural Basis of The Light-Harvesting Process in Plants
    Li An-Jie
    Liu Zhen-Feng
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2018, 45 (09) : 935 - 946
  • [38] Fluorescence upconversion and ab initio studies of the light-harvesting function of carotenoids in bacterial light-harvesting antenna
    Krueger, BP
    Scholes, GD
    Gould, IR
    Fleming, GR
    ULTRAFAST PHENOMENA XI, 1998, 63 : 666 - 668
  • [39] PROTEIN ENGINEERING OF BACTERIAL LIGHT-HARVESTING COMPLEXES
    HUNTER, CN
    FOWLER, GJS
    GRIEF, GG
    OLSEN, JD
    JONES, MR
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1993, 21 (01) : 41 - 43
  • [40] EXCITON DYNAMICS IN THE LIGHT-HARVESTING COMPLEXES OF RHODOBACTER-SPHAEROIDES
    PULLERITS, T
    CHACHISVILIS, M
    JONES, MR
    HUNTER, CN
    SUNDSTROM, V
    CHEMICAL PHYSICS LETTERS, 1994, 224 (3-4) : 355 - 365