The Evolutionary Interplay of Somatic and Germline Mutation Rates

被引:2
作者
Beichman, Annabel C. [1 ]
Zhu, Luke [2 ]
Harris, Kelley [1 ,3 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Univ Washington, Dept Bioengn, Seattle, WA USA
[3] Fred Hutchinson Canc Ctr, Computat Biol Div, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
germline mutation; somatic mutation; drift-barrier hypothesis; mutator; allele; Peto's paradox; aging; effective population size; DE-NOVO MUTATIONS; DNA-DAMAGE; BODY-SIZE; POPULATION-SIZE; NEUTRAL THEORY; GENETIC DRIFT; LIFE-SPAN; CANCER; GENOME; MECHANISMS;
D O I
10.1146/annurev-biodatasci-102523-104225
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.
引用
收藏
页码:83 / 105
页数:23
相关论文
共 157 条
[1]   Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans [J].
Abegglen, Lisa M. ;
Caulin, Aleah F. ;
Chan, Ashley ;
Lee, Kristy ;
Robinson, Rosann ;
Campbell, Michael S. ;
Kiso, Wendy K. ;
Schmitt, Dennis L. ;
Waddell, Peter J. ;
Bhaskara, Srividya ;
Jensen, Shane T. ;
Maley, Carlo C. ;
Schiffman, Joshua D. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (17) :1850-1860
[2]   The Mutational Profile of the Yeast Genome Is Shaped by Replication [J].
Agier, Nicolas ;
Fischer, Gilles .
MOLECULAR BIOLOGY AND EVOLUTION, 2012, 29 (03) :905-913
[4]   Biological roles of translesion synthesis DNA polymerases in eubacteria [J].
Andersson, Dan I. ;
Koskiniemi, Sanna ;
Hughes, Diarmaid .
MOLECULAR MICROBIOLOGY, 2010, 77 (03) :540-548
[5]  
Andrianova MA, 2023, bioRxiv, DOI [10.1101/2022.07.20.500591, 10.1101/2022.07.20.500591, DOI 10.1101/2022.07.20.500591]
[6]  
Bagic M, 2022, bioRxiv, DOI [10.1101/2022.12.17.520867, 10.1101/2022.12.17.520867, DOI 10.1101/2022.12.17.520867]
[7]   Evolution of evolvability via adaptation of mutation rates [J].
Bedau, MA ;
Packard, NH .
BIOSYSTEMS, 2003, 69 (2-3) :143-162
[8]   Evolution of the Mutation Spectrum Across a Mammalian Phylogeny [J].
Beichman, Annabel C. ;
Robinson, Jacqueline ;
Lin, Meixi ;
Moreno-Estrada, Andres ;
Nigenda-Morales, Sergio ;
Harris, Kelley .
MOLECULAR BIOLOGY AND EVOLUTION, 2023, 40 (10)
[9]   Evolution of the germline mutation rate across vertebrates [J].
Bergeron, Lucie A. ;
Besenbacher, Soren ;
Zheng, Jiao ;
Li, Panyi ;
Bertelsen, Mads Frost ;
Quintard, Benoit ;
Hoffman, Joseph I. ;
Li, Zhipeng ;
Leger, Judy St ;
Shao, Changwei ;
Stiller, Josefin ;
Gilbert, M. Thomas P. ;
Schierup, Mikkel H. ;
Zhang, Guojie .
NATURE, 2023, 615 (7951) :285-+
[10]  
Bergeron LA, 2022, ELIFE, V11, DOI [10.7554/eLife.73577, 10.7554/eLife.73577.sa0, 10.7554/eLife.73577.sa1, 10.7554/eLife.73577.sa2]